
EMBEDDING DATAFLOW INFORMATION ON ARRAYS INTO SSA AND
EXTENDED OPTIMIZATION SCHEMA FOR PARALLELIZATION

SATO, Hiroyuki
Information Technology Center, The University of Tokyo, Japan

Email: schuko@satolab.itc.u-tokyo.ac.jp

ABSTRACT
This paper presents an improvement of SSA (static single
assignment) to embed dataflow information of arrays. Be-
cause dataflow representation in SSA is based on names, an
extension of SSA to include array analysis needs essential
improvement. We regard an array as a collection of individ-
ual scalars. By using symbolic analysis, we solve equations
between indices, and extend SSA to include arrays.φ func-
tions are extended toδ in order to represent dependence on
previous iterations. Furthermore,γ is introduced to repre-
sent confluence of indexed variables. Optimizations using
our extended SSA are also discussed. Scalar optimizations
using SSA are naturally extended to arrays. In our model,δ
corresponds to synchronization between iterations, and its
elimination increases the opportunity of parallelization.

KEY WORDS
SSA, Parallelizing compiler, Compiler optimization,
Dataflow analysis

1 Introduction

Much effort has been done on improving the performance
of parallelizing compilers. Because most programs for
high performance computing handle arrays in loops, loop-
related optimizations on arrays are essential for perfor-
mance improvement. Moreover, almost every loop-related
optimization(= loop restructuring) is based on dataflow
analysis of arrays, the precision of the dataflow analysis de-
termines the performance. Therefore, there have been pro-
posed a number of schemes for dataflow analysis[11, 13].

Dataflow is also essential for general compiler opti-
mizations. A number of optimization techniques for scalars
including dead code elimination, constant propagation, in-
duction variable recognition, and register allocation, are
based on specific dataflow equations. It is very natural that
intermediate representations suitable for dataflow analysis
have been intensively studied. Among those, SSA(static
single assignment) form has been proposed in [2], and has
been proved very powerful in dataflow analysis of scalars.
SSA renames variables so that there is only one definition
for each variable. By using this scheme, dataflow is natu-
rally expressed as uses of only-once defined variables. In
this sense, SSA has dataflow information in itself. Because
of this advantage, we can naturally express def-use chains
by using SSA. Furthermore, the pseudofunctionφ repre-

senting control flow of branches and backedges is intro-
duced. Thanks toφ, SSA obtains wider applicability to
almost every scalar program. Today, it is one of standard
intermediate representation forms.

The fact that SSA embeds dataflow information im-
plies that SSA can be closely related with parallelism. Con-
ditions that parallel execution is possible are expressed by
using SSA. Moreover, there has been studied direct execu-
tion of SSA with connection to parallelism[4, 9].

However, when applying SSA to dataflow analysis of
arrays, we have a flaw. The reason is essential: the dataflow
representation in SSA is based on names. A naive appli-
cation is based on “array as a monolithic object” scheme,
which does not require the analysis of indices. This is out
of question in parallelizing compilers.

In this paper, we propose an extension of SSA based
on “array as a collection of indexed variables.” This is a so-
lution of the problem of integration of scalar analysis and
array data dependence analysis. In our scheme, dataflow
analysis of arrays is divided into loop-carried dependence
and loop-independent dependence. Loop carried depen-
dence, a major obstruct for parallelization, is naturally em-
bedded by using our new pseudofunctionδ. Symbolic anal-
ysis is applied to solve equations related withδ.

The rest of this paper is organized as follows: Section
2 defines our extension to SSA by usingδ andγ. In Section
3, we show that optimizations using our SSA are closely
related with synchronization optimizations and parallelism
extraction. Section 4 discusses the relation of our SSA with
previous work. Section 5 gives a summary of this paper.

2 Array SSA

In this paper, we measure the correctness of def-use chain
by covering:

Definition 1 (Cover) First, we consider a translation of an
original program to an SSA-ed one. A translated SSA-form
coversthe original program (fragment) if the def-use rela-
tion in the translated SSA-form is a superset of that in the
original program.

The translation is required to cover the original pro-
gram. The SSA translation for scalars covers the original
program. We require the same criteria to be applied in the
case of arrays.

The conventional and naivest covering translation is
to regard an array as a monolithic object. In this trans-
lation, an index part is ignored. An update of a part of
an array is considered to be an update to the whole array.
We call this translationNaive. By this definition,Naive is
a covering, because every write occurence of an array is
linked in the order they appear. The approach of [5] is also
a covering, because in every write, there is inserted aφ-
pseudofunction, and every write occurrence is linked in the
order they appear.

In our “array as a collection of individual variables”
scheme, we will show another covering translation under
the restriction that all indices of arrays are affine expres-
sions of loop indices. Note that this restriction is reasonalbe
in the field of high performance computing. Moreover, we
assume that loop indices are not allowed to be written as in
Fortran.

Let two occurencesa[g(i)] anda[f(i′)] for iterations
i, i′ be given. If the accessa[g(i)] usesa[f(i′)] of iteration
i′ such thati − i′ > ~0 (i > i′ for short), the equation is
written asf(i′) = g(i). The solution ofi′ is f−1(g(i))
if f−1(g(i)) < i. If f andg are given as matrices, this
can also be given as an affine expression of loop indices.
We denote suchf ’s by access functionof the occurence
a[f(i)]. Furthermore, the dimensions off andg are the
nest levels of the loop. We call this solution thesolution
vector. A subspace of solution vectors is given as a function
of i, f andg.

Note that given an index vectori, and a solution vec-
tor s(i), the distance vector is calculated as(s − I)(i). In
this sense, a solution vector is a generalization of a distance
vector.

Formally, we first extend the definition of variables to
define our array SSA.

Definition 2 (Indexed Variable) Given an array namea
and an expressione, a[e] is a variable. We denote it by an
indexed variable. The identity between indexed variables
is given in the way such thata[e] anda′[e′] are identical
only if a ≡ a′ ande ≡ e′.

For the indexed variablea[e], a is denoted by itsname
part, ande is denoted by itsaccess part.

Definition 3 Let an occurrence in a program be given. As-
sociated with the occurrence, there is defined a loop nest
with a vector of loop index(i0, i1, · · · , in). We denote
(i0, i1, · · · , in, 1) by loop nest vector.

Note that with every occurrence of variable is associ-
ated a loop nest vector. We call itloop nest vector of the oc-
currence. Loop nest vectors are pre-ordered by the relation
that for each element,i is greater thani′ iff i − i′ > ~0. As
for loop nest vectors,v is greater thanv′ if the occurrence
of v appears lexically before that ofv′. We confusingly use
> for this order.

Definition 4 A δ-pseudofunction is composed of
two lists of a pair of indexed variable occurrences

and its associated access function. Specifically,δ-
function is of the form: δ((v0, accv0), · · · , (vn, accvn);
(w0, accw0), · · · , (wm, accwm

); lnv), where vi(i =
0, · · · , n) and wj(j = 0, · · · ,m) are occurrences of a
variable,acci is its associated access function, andlnv is
a vector representing an access function of the indexed
variable at the occurrence.

We denotevi’s by its initialization part, andwj ’s by
its backedge part.

Definition 5 Consider a δ-pseudofunction
δ((v0, accv0), · · · , (vn, accvn);
(w0, accw0), · · · , (wm, accwm

); lnv). Its interpretation in
a location whose loop nest vector is(i0, i1, · · · , i`, 1) is
given as: if it is not the first visit to thisδ, δ indicateswi

at the iterations ∈ acc−1
wi

(lnv) wheres is the maximum
among solutions inw’s, or the backedge part such that
s < (i0, · · · , i`). Otherwise, this means that it is the first
visit to theδ or there is no solution in the above equations.
Therefore,δ indicatesvj where s ∈ acc−1

vj
(lnv) is the

maximum among the solutions of the initialization part.

From those discussions, we can conclude thatδ repre-
sents the loop-carried data dependence and synchronization
between iterations.

Definition 6 We use⊥ as an access function meaning
‘don’t care.’

Example 1 Consider the program below:

(1) for i = 1, 100
for j = 1, 100

a(i, j) = a(i, j − 1) + 1
endfor

(2) for k = 1, 100
a(i, k) = a(i, k + 1) + 2

endfor
endfor

As for indexed variables, we define variables asso-
ciated with occurrencesa(i, j), a(i, j − 1), a(i, k), and
a(i, k + 1) respectively. Moreover, the loop nest associ-
ated with each variable is(i, j, 1), (i, j, 1), (i, k, 1), and
(i, k, 1) respectively. The access function associated with
each variable is given as

A1 =

(
1 0 0
0 1 0
0 0 1

)
, A2 =

(
1 0 0
0 1 −1
0 0 1

)
,

A3 =

(
1 0 0
0 1 0
0 0 1

)
, A4 =

(
1 0 0
0 1 1
0 0 1

)
,

respectively.
At (1), the loop nest vector is given as(i, 1), while

at (2), the vector is given as(i, k, 1). At (1), the ex-
pressionδ((ainit,⊥); (a[i, j]0, A1), (a[i, k]0, A3); (i, k +
1, 1)) is a valid δ function. Because the loop nest vec-
tor of occurrencesa[i, j] and a[i, k] are given as(i, j)
and (i, k) respectively, the semantics of theδ function is

given by an occurrence ofa[i, j] or a[i, k] whose loop
nest(i′, k′) satisfies the constraints:(i′, k′) = (i, k + 1)
and (i′, k′) < (i). In this case, there is no solution, and
ainit is taken1 At the point (2), the expressionδ((a[i, k +
1]0,⊥); (a[i, k]0, A3), (a[i, k + 1]1, A4); (i, k, 1)) is also
valid, anda[i, k + 1]0 is taken as the solution.

We need one more pseudofunctionγ which represents
loop-independent dependence.

Definition 7 γ-pseudofunction is composed of a condi-
tion, and the nodes representing confluence of the control
flow. Specifically,γ-function is of the form:

γ(P ; v0, v1),

where P is a formula expressing conditions , and
vi(i = 0, 1) is a variable. The interpretation ofγ is given
as:

if (P) then (v0 s.t. (P)) else (v1 s.t.¬(P)).

In the rest of this paper, we use the form ofaccv =
accw as the condition ofγ pseudofunction. We de-
scribe the interpretation ofγ(accv = accw; v, w) as: let
Γ ≡ γ(accv0 = accv1 ; v0, v1) be given at a location
` whose loop nest vector is(`0, · · · , `n, 1). Let Ivi =
(i0, · · · , imvi

, 1) be the loop nest vector associated with
vi(i = 0, 1). We assumen ≤ mvi . Then,Γ’s interpre-
tation is given as:

if (∃jn+1 · · · jmv0
, j′n+1 · · · j′mv1

.

accv0 [`0/i0, · · · , `n/in, jn+1/in+1, · · · , jmv0
] =

accv1 [`0/i0, · · · , `n/in, j′n+1/in+1, · · · , j′mv1
]

and the locations which haveIvis as loop nest vectors
are lexicographically before the location`.)
then v0 such that its occurrence is the maximum of

those satisfying the above condition
elsev1

For this fixed interpretation, we omit its
condition-part if it is clear from context. More-
over, we write γ(v0, v1, · · · vn) for nestedγ-functions
γ(v0, γ(v1, · · · γ(vn−1, vn) · · ·)).

We translate a loop with access to an array to an SSA
form with δ-nodes andγ-nodes. These principles apply to
multiple definitions and uses. Let us consider a program:

loop i

a[f(i)]←− · · ·
· · ·
←− a[g(i)]
· · ·

a[h(i)]←− · · ·
· · ·
←− a[k(i)]

endloop

1ainit is also written asa⊥ in Figures.

The loop can be translated to the form below:

loop i
a[f(i)]0 ←−

δ((a[f(i)]init,⊥); (a[f(i)]1, f), (a[h(i)]1, h); (f(i), 1))
a[g(i)]0 ←−

δ((a[g(i)]init,⊥); (a[f(i)]1, f), (a[h(i)]1, h); (g(i), 1))
a[h(i)]0 ←−

δ((a[h(i)]init,⊥); (a[f(i)]1, f), (a[h(i)]1, h); (h(i), 1))
a[k(i)]0 ←−

δ((a[k(i)]init,⊥); (a[f(i)]1, f), (a[h(i)]1, h); (k(i), 1))
· · ·

a[f(i)]1 ←− · · ·
· · ·

a[g(i)]1 ←− γ(f(i) = g(i); a[f(i)]0, a[g(i)]0)
←− a[g(i)]1

a[h(i)]1 ←− · · ·
a[k(i)]1 ←−

γ(h(i) = k(i); a[h(i)]1, γ(f(i) = k(i); a[f(i)]1, a[k(i)]0))
←− a[k(i)]1

endloop

Let us closely analyzeδ andγ in this example.δ func-
tions can be considered to represent the loop carried depen-
dence. If the loopi is executed in parallel, there must be
synchronization codes between loops at the beginning of
the loop. Fourδ nodes in the example represent this kind
of synchronization, because two definitions (a[f(i)]1 and
a[h(i)]1) of previous iterations are catched there. On the
other hand, theγ function can be considered to represent
the loop-independent dependence.

Furthermore, by usingγ, we can represent depen-
dence over loops. From the view of definitions, the loops
can be summarized as a collection of definitions. Let us
consider a simple example:

loop i
loop j

a[f(i, j)] = · · ·
· · ·

endloop
· · · = a[g(i)]

endloop

The effect ofloop j is a collection of definitions of
the forma[f(i, j)]. Therefore, when referring toa[g(i)],
its whole effect must be considered. This can be reflected
as inserting the code just after the loop:

a[g(i)] = γ(f(i, j) = g(i); a[f(i, j)], a[g(i)]),

which means by definition: if∃j.f(i, j) = g(i), then
a[f(i, j)] such thatf(i, j) = g(i), elsea[g(i)].

We list the result of the translation.

loop i
a[g(i)]0 = δ((a[g(i)]init,⊥); (a[f(i, j)]0, f); (g(i), 1))
loop j
a[f(i, j)]0 = δ((a[g(i)]0, g); (a[f(i, j)]1, f); (f(i, j), 1))
a[f(i, j)]1 = · · ·

endloop
a[g(i)]1 = γ(f(i, j) = g(i); a[f(i, j)]1, a[g(i)]0)
· · · = a[g(i)]1

endloop

Let us review how problems of considering “array as
a collection of individual variables” are solved:

1. An indexed variable is introduced to represent the
“collection of variables.” It is given a symbolic ma-
nipulation withδ andγ.

2. the loop carried dependence and other dependence are
represented as a certain kind of equations inδ andγ
respectively. The property that a location where an
equation must be solved is also specified gives a major
difference from conventional data dependence analy-
sis.

3 Optimizations of δ

Becauseδ is closely related to synchronization, its opti-
mization can be considered as a synchronization optimiza-
tion. Optimizations ofδ include conventional SSA-based
scalar optimizations. A major difference to optimizations
for scalar SSA is that the def-use chain is further optimized
by using index calculation.

3.1 Eliminating Backedges and Synchronization Op-
timizations

If we can prove that in an assignment ofδ, the indices of
lhsand backedges inδ do not overlap by using data depen-
dence analysis, the backedge part can be eliminated from
theδ. The complication is that the backedge does not dis-
appear. Instead, a backedge must be hoisted to where the
lhs in the assignment is used.

Example 2 Let us consider the matrix multiplication (A)
and its translation to an arraySSA form (B) in Figure 1.

Consider the array variablec(i, j)134589064 and the in-
nermost loop. Because the innermost assinment ofδ has no
overlap with the backedge given asc(i, j)134589064, it can
be eliminated. Instead, the assignmentc(i, j)134588588 =
δ(c(i, j)134587296; ; (i, j, 1)) is produced. Moreover,
c(i, j)134589064 is hoisted to the use ofc(i, j)134588588, and
its use is replaced withc(i, j)134589064. If the backedges
disappear, there is no reason of usingδ. Therefore, the
wrapper is also removed. Note that for the outermostδ, we
can apply the same optimization. The resulting program
is (C). Furthermore, we can coalese simple assignments. In

other words, we can replace the variable-to-variable assign-
ment with the replacement of the use oflhsby rhs. Finally,
we obtain the program (D).

Because backedges have the role of synchronization,
hoisting of backedges means a kind of synchronization op-
timization. Given aδ-termδ((v0, accv0), · · · , (vn, accvn

);
(w0, accw0), · · · , (wm, accwm

); lnv) at a location`, we
first check whetheracc−1

vi
(lnv) has a solution. This can

be done with conventional data dependence analysis. In
this sense, information on data dependence is embedded
in δ-pseudofunctions. If there is no solution, the term
(vi, accvi

) can be eliminated, and there is no “backedge”
or loop-carried dependence caused byvi.

Let us assume that there is no loop-carried de-
pendence. Theδ-term can be optimized to a form of
δ((w0, accw0), · · · , (wm, accwm

); ; lnv). In this case, there
is no need to have synchronization with previous iterations.
Therefore, it deserves definition:

Definition 8 We denote aδ-pseudofunction of the form
δ((w0, accw0), · · · , (wm, accwm); ; lnv) by p-δ form.

A p-δ form is not an obstruct for parallelization be-
cause there is no loop-carried dependence.

Theorem 1 If all the δ-pseudofunctions in a loop are in the
p-δ form, the loop can be executed in parallel.

This optimization is applied to (D) resulting in (E) of
Figure 1.For loops are transformed toforall loops.

Furthermore, if a solution among equations on
wj ’s is unique, then theδ-term itself can be substi-
tuted for the solution. Let us assume that the solution
is (wj , accwj). Then, the p-δ form can be eliminated,
and be converted toa[acc−1

wj
(lnv)], wherea is the name

part of wj . If m > 0, it can be translated simply
to γ((w0, accw0), · · · , (wm, accwm)). Thus inter-iteration
synchronization can also be eliminated.

3.2 Loop Restructuring andδ

Loop restructuring[11] is a powerful optimization tech-
nique to maximize parallelism. It is natural that associated
with optimizations ofδ are loop restructuring optimizations
because the restructuring affects the dependence.

Let us consider a δ-pseudofunction
δ((v0, accv0), · · · , (vn, accvn);
(w0, accw0), · · · , (wm, accwm)); lnv), and let us as-
sume that a loop restructuring~i 7→ ~i′ is given by a
unimodular matrixP such thatP~i′ = ~i, where~i and~i′ are
loop indices.

Becauseaccvi ’s are given as functions of loop
indices, we haveaccvi 7→ accviP . To summa-
rize, we have δ((v0, accv0P), · · · , (vn, accvnP);
(w0, accw0P), · · · , (wm, accwmP); lnv), as the loop
restructuring transformation.

Let lnv = F~i for someF . Thenlnv = FP~i′. The
original solution vector is given asacc−1

vi
(F~i). On the other

hand, when loop restructuring is applied, the solution vec-
tor is

P−1acc−1
vi

(lnv) = P−1(acc−1
vi

F)P~i′,

which is conjugate to the original solution. The re-
striction thatP must be unimodular in the case of loop re-
structuring guarantees the existence ofP−1.

To summarize, let us assume thatP is given as a uni-
modular matrix for representing a loop restructuring opti-
mization. Then

Theorem 2 A loop restructuring optimization gives
change ofδ-pseudofunctions to
δ((v0, accv0P), · · · , (vn, accvn

P);
(w0, accw0P), · · · , (wm, accwmP)); lnv), with the
condition

P−1(acc−1
vi

F)P~i′ < ~i′.

4 Related Work

SSA[2] has been proved suitable for analyzing scalar val-
ues. A number of optimizations are described by using
SSA because of its efficiency in handling scalars. Its ef-
ficiency is proved both theoretically and practically[12, 7].

There are proposed several extensions of SSA to han-
dle arrays. In [8], region arraySSA, a method to make ac-
cessed region of arrays as strict as possible is proposed.
In [5], array SSA has been proposed. However, it is
still in the “array as a monolithic object” scheme. Gated
SSA(GSA)[10] adopts symbolic computation in improving
the accuracy of analysis. LastWriteTree(LWT) is proposed
in [3], and used in the optimization of high performance
compilers[6]. Although LWT has much in common with
SSA, it is not intended to be embedded in SSA. [1] is an-
other approach that replaces arrays with scalars.

As previous works sharing the objective with ours, we
can list array SSA[5], LWT[6] and region arraySSA[8]. We
show the comparison of functions between our arraySSA
and them in Table 1. Using our arraySSA, because arrays
are handled as scalars (indexed variable), and dataflow on
arrays is embedded in our arraySSA, both scalar optimiza-
tions (copy propagation etc.) and array optimizations (syn-
chronization optimization, parallelism extraction etc.) can
be naturally expressed in our scheme.

5 Conclusion

In this paper, we have proposed an extension of SSA with
δ andγ pseudofunctions. This is a solution of the problem
of integration of scalar analysis and array data dependence
analysis

Moreover, we have studied optimizations by using our
framework. Optimizations ofδ’s have been shown to be

synchronization optimizations. Relations to loop restruc-
turing optimizations have been also discussed. Finally, we
have discussed the expressive power of parallelism extrac-
tion and scalar optimization extension, as a comparison
with previous results, and have shown that our arraySSA
is very powerful.

References

[1] Callahan, D., Carr, S., Kennedy, K.: “Improving
Register Allocation for Subscripted Variables,”Proc.
1990 Programming Language Design and Implemen-
tations, 1990, 53–65.

[2] Cytron, R., Ferrante, J., Sarkar, V.: “Compact Repre-
sentation for Control Dependence,”Proc. 1990 Pro-
gramming Languages Design and Implementation,
1990, 337–351.

[3] Feautier, P.: “DataFlow Analysis of Array and Scalar
References,”Int’l J. Parallel Programming, 20(1),
1991, 23–54.

[4] Kim, C., Gaudiot, J., Proskurowski, W.: “Paral-
lel Computing with the Sisal Applicative Language:
Programmability and Performance Issues,”Software
Practice & Experience, 26(9), 1996, 1025–1051.

[5] Knobe, K., Sarkar, V.: “Array SSA form and its use
in Parallelization,”Proc. 1998 Principles of Program-
ming Languages, 1998, 107–120,

[6] Mayden et.al.: “Array Data-Flow Analysis and Its
Use in Array Privatization,”Proc. 1993 Principles of
Programming Languages, 1993, 2–15.

[7] O’Brien, K. et.al.: “XIL and YIL: The Intermediate
Languages of TOBEY,”Proc. Workshop of Interme-
diate Representation’95, 1995, 71–82.

[8] Rus, S., He, G., Alias, C., Rauchwerger, L.: “Region
Array SSA,” Proc. Parallel Architectures and Com-
piler Techniques 2006, 2006, 43–52.

[9] Skedzielewski, S.: SISAL, in Szymanski, B. (Ed.)
Parallel Functional Languages and Compilers, 1991,
105–157.

[10] Tu, P., Padua, D.: “Gated SSA-Based Demand-
Driven Symbolic Analysis for Parallelizing Compil-
ers,” Proc. 1995 Int’l Conf. Supercomputing, 1995,
414–423.

[11] Wolf, M., Lam, M.: “A Loop Transformation The-
ory and Algorithm to Maximize Parallelism,”IEEE
Trans. Parallel and Distributed Systems, 2(4), 1991,
452–471.

[12] Wolfe, M.: “Beyond Induction Variables,”Proc. 1992
Programming Languages Design and Implementa-
tion, 1992, 162–174.

[13] Wolfe, M.: High Performance Compilers for Parallel
Computing, 1995.

(A) (B)

for j = 1, n
for k = 1, n

for i = 1, n
c(i, j) = c(i, j) + a(i, k) ∗ b(k, j)

endfor
endfor

endfor

for j = 1, n⊥
c(i, j)134586004 = δ(c(i, j)⊥; c(i, j)134587296; (i, j, 1))
for k = 1, n⊥

c(i, j)134587296 = δ(c(i, j)134586004; c(i, j)134588588; (i, j, 1))
for i = 1, n⊥

c(i, j)134588588 = δ(c(i, j)134587296; c(i, j)134589064; (i, j, 1))
c(i, j)134589064 = c(i, j)134588588 + a(i, k)⊥ ∗ b(k, j)⊥

endfor
endfor

endfor

(C) (D)

for j = 1, n⊥
c(i, j)134586004 = c(i, j)⊥
for k = 1, n⊥

c(i, j)134587296 = δ(c(i, j)134586004; c(i, j)134589064; (i, j, 1))
for i = 1, n⊥

c(i, j)134588588 = c(i, j)134587296
c(i, j)134589064 = c(i, j)134588588 + a(i, k)⊥ ∗ b(k, j)⊥

endfor
endfor

endfor

for j = 1, n⊥
for k = 1, n⊥

c(i, j)134587296 = δ(c(i, j)⊥; c(i, j)134589064; (i, j, 1))
for i = 1, n⊥

c(i, j)134589064 = c(i, j)134587296 + a(i, k)⊥ ∗ b(k, j)⊥
endfor

endfor
endfor

(E)

forall j = 1, n⊥
for k = 1, n⊥

c(i, j)134587296 = δ(c(i, j)⊥; c(i, j)134589064; (i, j, 1))
forall i = 1, n⊥

c(i, j)134589064 = c(i, j)134587296 + a(i, k)⊥ ∗ b(k, j)⊥
endfor

endfor
endfor

Figure 1. An example ofδ-Optimization by using arraySSA

Table 1. Comparison of ArraySSA Solutions

Naive LWT[6] ArraySSA[5] Region arraySSA[8] Our ArraySSA

Covering o o o o o
Parallelism and related Opts.

Parallelism Extraction o o* o o
Loop Restructuring Repr’n o

Synchroniz’n Code Opt. o
Scalar Opts.

Dead Code Elim’n, Const. Propagat’n etc. o o
Scalar Replacement o o

*) requires independent dependence analysis.

