
Representation and Analysis of Mobile Computing using
TeleLog– A Mobile Logic Language

SATO, Hiroyuki

Information Technology Center,
The University of Tokyo,
Tokyo, 113-8658, Japan.

ABSTRACT

In the era of the Internet, mobile agents provide novel and
promising approach to analysis of computation in the com-
munication network. In this paper, we define TeleLog, and
analyze mobile computing using modal logic. ��� and
�������

primitives are augmented with ordinary logic lan-
guages. They are given operational semantics in terms
of mobile computing. Moreover, modality of TeleLog is
analyzed, and applied to the expressive power analysis of
TeleLog. We represent a security mechanism using hook
and assert functions that can be represented for the first
time by using modality.
Keywords: mobile agent, logic programming, modality,
security

1 Introduction

In the era of the Internet, mobile agents provide novel and
promising approach to analysis of computation in the com-
munication network. A mobile agent is a computer pro-
gram that can move around different hosts across the net-
work while carrying code and data. Mobility is observed
commonly in internet computing such as Java applets, Web
crawling, e-commerce, and some vicious computer virus.
Therefore, it is significant to analyze key aspects of mobile
computing such as security on a firm semantic basis.

TeleLog[16] is a logic programming approach to mobile
agents. Like other logic programming languages, TeleLog
is an executable fragment of some kind of logic. There is
given a natural logic-based semantic framework for logic
languages. In this meaning, behaviors of logic languages
are relatively easy to analyze. Our goal is to analyze mo-
bile computing using TeleLog.

This paper presents an approach to the analysis of mo-
bile computing using modal logic. Modal logic is one of
major methods in extending logic. Specifically, we give
operational semantics to mobile computing in Kripke-like
frame. A place corresponds to a world in Kripke’s sense.
Mobility means that a program can explicitly move around

Kripke worlds. Actually, modality can represent a variety
of concepts including time, provability, and belief. This
paper tries adding mobility to this menu.

We also show that modality is essential to represent
some useful concepts of mobile computation. In particu-
lar, security checking mechanism is given a representation
in TeleLog. Because security is one of key aspects in mo-
bile computing, we can conclude that this fact implies the
usefulness of TeleLog.

The rest of this paper is organized as: Section 2 defines
TeleLog, and gives its basic semantics without modality.
Section 3 is devoted to the analysis of modality of TeleLog.
This analysis is applied to the expressive power analysis
of TeleLog in Section 4. Section 5 surveys related work.
Section 6 gives a summary of this paper.

2 TeleLog

2.1 Syntax

TeleLog[16] is a logic programming language for mobile
calculi. Computation is processed on places. A program
can interact with its embracing “places” using ��� and
���	���

primitives.

2.2 Syntax

Definition 1 The syntax of TeleLog is defined in Figure 1.
A program is a located Horn clause.

In addition to ordinary Prolog syntax, we consider ad-
dresses. �
� and

���	���
are defined as primitives related

to addresses.

2.3 Semantics of TeleLog without Modality

First, we give operational semantics to TeleLog without
modality. It is given based on resolution on formulas and
unification on terms in the same way as ordinary Prolog
except �
� and

�������
. Here, we concentrate on axioms

of �
� and
�������

.

� ����� ���	��
��������������
Predicate� ����� ���������
Modality� ����� ��� �

Unit Clause� �����
Literals�
unit clause� �����! ! #" go� ������� �$ # #" here% �����

Horn clauses�
unit clause� �&�(')�
 ����������� �
program clause� *)'+�
 ���������,� �
goal clause- �����
located Horn clauses.0/1/ �32 2 %54 4

Figure 1: Syntax of TeleLog

Definition 2 The axiom of �
� is given as:
672 �	*8' �
�:9 �,;=<>�������7��; � �@? 4

9 2 �	*8'A;=<#�������7�,; � �B? 4

Here
?

is a substitution that represents correspondence
between variables and terms. Note that in the above def-
inition, a substitution can move from

6
to 9 . This corre-

sponds to collecting terms from multiple addresses.

Definition 3 The axiom of
�������

is given as:

672 �������C6 4

Because the semantic domain is extended to include ad-
dresses, we need extension to resolution and unification.

Because TeleLog is extended so that a program may
move among addresses, in a unifier, we may have terms
defined on different addresses. Therefore, we extend the
unification and the most general unifier (DFE!G) in order to
include remote terms. We also denote this extended unifier
by DHE$G . The mechanism of collecting terms from multiple
addresses is a major function of mobile computing.

Definition 4
6I2 *8'J�	;
 ��K�K�K���; � ��L 4 6I2 M ��')N
 ����������NPO 4

672 *)'J�	N
 �������7�,NQOR��;=<#�������7�,; � �SL(? 4

where
�T?R� DHE$G �	;
 L�� M � 6 �

In
?�� DFE!G �U;
 L3� M � 6 , ? is the most general unifier of;
 L
and

M
at location

6
.

In this definition, substitutions
?

and
L

represent corre-
spondence between variables and terms. DHE$G is calculated
on a specific address

6
, but substitutions can collect terms

from multiple addresses as discussed in the definition of
��� .

Actually, the mechanism of ��� and
�������

is so gen-
eral that we can encode a remote subroutine call in which
we visit a remote place, do something, and return to the
original place.

Example 1 Consider the program fragment below:

���	���WV ! >" � ����9 ��;X� ��� V ! >" ������� �ZY��

This sequence is an implementation of the remote reso-
lution call provided that the call always succeeds. On any
address, this program first moves to D , does some work
(G), and finally returns to the original address as shown in
Figure 2.

3 Modality in TeleLog

In this section, we discuss modality in TeleLog.
The resolution scheme for modal logic is already given

in [8], and the one for hybrid logic is given in [1]. Even
before these schemes, a number of logic programming lan-
guages with modality are proposed [11]. This paper adds
another resolution scheme for TeleLog, an executable logic
with restricted modality. Our scheme can express some im-
portant concepts of mobility such as security.

3.1 Operational Semantics

Considering the semantics of TeleLog, the modality must
be taken into consideration.

The engine of fully-fledged TeleLog is based on that of
TeleLog without modality discussed in Section2. To dis-
cuss modality, we need an extra environment.

Definition 5 The modality environment of TeleLog con-
sists of a pair [��\ of set of clauses. The form

[�,\F] 672 ^ 4

represents a resolution of TeleLog which satisfies rela-
tions in Figure 3.

Intuitively, in the form [��_]#` 2 ^ 4 , [represents formulas
that wait to be proved at every address where �
� goes,

6I2 *8' ���	���WV ! >" � ��� 9 � �
� V # #" ������� 4 ? 672 ������� 6 4
672 * ' ��� 9 ��;X� ��� V ! >" ������� 4 ? 2 V ! >" � 6 4

9 2 *)'+;X� �
� V # #" ������� 4 ? 2 V ! #" � 6 4 9 2 ; � '+����� 4
...9 2 *)' �
� V ! #" ������� 4��? 2 V ! #" � 6 4

672 *)' ����� 4 �? 2 V # #" � 6 4

Figure 2: Resolution associated with remote resolution call: the effect of
;

is reflected in the change from
?

to
�?
.

1. V�� \
[��\] 6 2 V 4

2. [��\] 672 *8'A;
 ���������,; � 4 [��\] 672 M � ' ^
 ��������� ^ O 4
[��\] 6I2 *8'J� ^
 ��������� ^ O ��; < ����������;=���@? 4 ? � DHE$G �	;
 � M �

3. (modality)
[��\] 672 *8'J� V �,;
 ����������; � 4
[��	� V�
 ��\] 6I2 *8'A;
 �������7�,; � 4

4. (go)

[��\] 672 * ' ��� 9 ��;
 ���������,;=� 4 [��\] 6I2 � V� 4 ? � �
O�����

�
� ��\] 9 2 * '�� [4

...� ��\] 9 2 4 ?
[��\ �	� V� ������� V O
] 9 2 *8'A;
��������7�,;=� 4 ? � �����S? O ? � � 6�� 9

Figure 3: Resolution Rules of TeleLog

while
\

represents extra axioms which are forced to be
valid from outside address. Particularly for modality, if a
clause succeeds in a path, the process is a proof including
that on every place on the path that a clause visit, every�

-ed clause is true, hence
�

-ed clause is true in the path.
If we consider the path as a Kripke frame, we can give
semantics to this program relative to this frame.

According to Kripke semantics of modal logic, if
� V

appears in a resolution,
V

must be checked whenever a
program moves its address. If

� V
appears as a unit clause

in an address, it must be valid wherever a program moves
from the address to another address. We do not allow
a modal formula to appear as LHS of a program clause.
Therefore, the rule 2. of Definition 5 does not apply to
modal formulas.

Actually, if a program clause such as
672 � V ��'=��N 4

is
allowed, we must check

��N
to resolve

� V
at
6
. Then at

every address from
6
, we must check

N
to prove

V
at ev-

ery address from
6
, which proliferates resolution processes,

and add undesirable complexity. Instead, we put a restric-
tion on modality, and obtain its clear semantics.

4 Expressive Power of Modality of
TeleLog

The modality in TeleLog can express some significant con-
cepts of mobile computing such as hook and assert. Re-
view the rules of modality and ��� in Definition 5.

[�,\F] 672 *8' � V ��;
 ���������,; � 4
[�	� V�
 �,\F] 6I2 *)'+;
 �������7��; � 4

If we encounter a modal formula
� V

during a resolu-
tion,

V
must be resolved in every address thereafter vis-

ited. Therefore,
V

must be saved in [-part, and when
a ��� is executed, it is resolved. This process is repre-
sented in the resolution of [-part in the rule of �
� (4.
in Figure 3) which requires both the success of resolu-
tion of

� �,\] 9 2 *X' � [4 , and adds extra axioms given
as
V � ������� V O

from the outer world.
Therefore, we can say that if the resolution succeeds, the

check (resolution of [-part) is done, and we can move
6

to9 with additional axioms
V � ������� V O

. This implements a
hook mechanism, which can be used to describe the secu-
rity check mechanism in mobile calculus.

One more point to be noted in the rule of ��� is that
if
� V

is asserted as a unit clause, then at every address
thereafter visited,

V
is treated as a unit clause in

\
-part.

This can be used as side-effect in a resolution.

4.1 Hook and Security Check

Processing
�

-ed clauses is a kind of prologues of function
calls. Actually, if we register some actions as a set of

�
-ed

clauses, we can use them as hooking mechanism at enter-
ing an address.

�

safety checked in m is false.

action B

�

safety checked in m is true.

action A

9

Figure 4: Security Layer given by Example 2

Hooking at entering an address is important in the sense
that we can insert hidden actions there. As an important ap-
plication of this kind of hooking, we show security check-
ing mechanism below. Note that security checking by ver-
ifying certificates must be performed:

1. at the very moment an agent enters an address, the
address spawns the verifier process, or

2. if the address is required to verify the certificate that
an agent has, the verifier process is spawned.

TeleLog cannot represent the first option because effects
are brought only by an agent. As for the second option, if
we have assert mechanism as in Prolog, we can repre-
sent the security check mechanism below.

Example 2 In an address 9 , let the program below be
given:

verify_certificate(X) :-
cert_check(X),
assert(safety_checked_in_m).

verify_certificate(X).

cert_req_actionA(X) :-
safety_checked_in_m,
actionA(X).

cert_not_req_actionB(X) :- actionB(X).

Assume that cert_check(X) is given to check the
certificate passed as X.

Let a goal clause be written as below.

?- []verify_certificate(my_cert),
goal_1, goal_2, go m, ...

When the program makes
a �
� to 9 , according to the resolution rule of ��� , the
clause verify_certificate(my_cert) is checked
first. If the check succeeds, safety_checked_in_m is
asserted. After this assertion, safety-requiring actions can
be performed. If the check (cert_check) fails, safety-
requiring actions cannot be performed, but other actions
are still possible (Figure 4).

If
a program is written without verify_certificate,
the security is not checked. Only not-safety-requiring ac-
tions are possible. In this way, we can describe a security
layer.

4.2 Assert

Assertions have side effects in the sense that it changes
the semantics of a program.

� V
acts as an assertion of

V
in the addresses a program visits. Although this modality
is restricted to unit modality, this extension can partially
express functions of assert primitive.

Particularly, we show that a restricted form of assert
can be represented in TeleLog. This enables us to describe
security mechanism in pure Telelog.

Example 3 Let an address
� ����� be defined as follows:

LocM[verify_certificate(X) :-
cert_check_strict(X).]

LocM[[]safety_checked_in_m.]

Let an address � be defined as follows:

M[verify_certificate(X) :-
safety_checked_in_m.]

M[verify_certificate(X) :-
cert_check(X), LocM::true.]

M[cert_req_actionA(X) :-
safety_checked_in_m, actionA(X).]

M[cert_not_req_actionB(X) :- actionB(X).]

If a program enters address � , its certificate
is checked, and goes to

� ����� . In
� ����� ,�

safety_checked_in_m is asserted. This means that
at the point of the return from

� ����� (the success of
LocM::true), safety_checked_in_m is valid. At
the return, because verify_certificate succeeds
by the first clause, there is no infinite travel between �
and

� ����� .
In this meaning, assert(A), a Prolog extension can

be represented as LocM::A.

This result indicates that security check can be ex-
pressed without assert primitive.

Note that TeleLog itself is open to the security pol-
icy in the real world. For example, the key predicate
safety_checked_in_m must be confidential to other
addresses. Moreover, the connectivity of

� ����� to � ,
and its dis-connectivity to addresses other than � must
be separately expressed(Figure 5). However, despite these
open problems, we can say that TeleLog is a candidate for
expressing security mechanism.

������� 	

 �

�
�
�
� � �����������������

�� �� �����

confidential

Figure 5: Connectivity of M and LocM

5 Related Work

Extensions of logic programming languages and unifica-
tion to include code mobility have been tried mainly in
AI. In particular, BinProlog/Jinni[18, 17] extends Prolog
to facilitate communication between agents via global tu-
ple space. Unification in tuple space is critical in its remote
resolution.

Addition of modality to logic programming languages
has a long history [11]. In its earlier stages, temporal logic
was a major concern [3, 4, 15]. A resolution system for
modal logic is given in [8]. For hybrid logic, [1] gives a
resolution system. Our resolution gives another system.
The difference to previous researches lies in that we give
a special treatment to modality that enables the represen-
tation of hooking, and security mechanism as its applica-
tion. Besides, logic programming, Modal-ML [20] imple-
ments [12]. In Modal-ML, modality is used as representing
a stage of compilation.

There have been proposed a number of programming
languages such as Telescript[19], Odyssey, Voyger, and
Aglets[9] to represent mobility. Among those, Telescript
is the first industrial strength mobile agents programming
language designed by White. TeleLog owes much to Tele-
script in the idea of representing mobility.

Another line that has direct connection with this paper
is mobile calculus. It has emerged as a variant of process
algebra [2], but soon has become one major line [5, 10, 14].
Among those, D � [13] has introduced resources together
with locations and �
� as ours. Our system is type-free
while D � is concerned with types for locations, channels,
and transmissions. [6] uses locations as layering services
in applications, host, and net.

The expanding Internet world requires appropriate cal-
culus for mobile calculus that expresses Java applets or
Web crawling [7]. Mobile calculus is also closely related
to mobile shopping, an important branch of e-commerce,
which Telescript has as background.

6 Concluding Remarks

In Section 2, we have defined TeleLog, and gives its ba-
sic semantics without modality. ��� and

�������
primitives

are introduced to ordinary logic languages. They are given
operational semantics in terms of mobile computing. In
Section 3, we have focused on modality of TeleLog. Its
operational semantics is given. This analysis has been ap-
plied to the expressive power analysis of TeleLog in Sec-
tion 4. We have represented a security mechanism using
hook and assert functions that can be represented first by
using modality.

References

[1] Areces, C., de Nivelle, H., de Rijk, M., “Resolution
in Modal, Description and Hybrid Logic,” J. Logic
and Computation, 11(5), 2001, 717–736.

[2] Baeten, J, Weijland, W., Process Algebra, 1990.

[3] Baudinet, M., Temporal logic programming is com-
plete and expressive, Proc. 1989 Principle of Pro-
gramming Languages 1989, 267–280.

[4] Baudinet, M., On the expressiveness of temporal
logic programming, Information and Conmputation,
117(2), 1995, 157–180.

[5] Cardelli, L, Gordon, A., “Types for Mobile Ambi-
ents,” Proc. 1999 Principles of Programming Lan-
guages, 1999, 79–92.

[6] Chothia, T., Stark, I., “A Distributed � -Calculus with
Local Areas of Communication,” Proc. High-Level
Concurrent Languages ’00, ENTCS 41.2, 2000.

[7] Fielder, J., Hammer, J., “Using the Web Efficiently:
Mobile Crawlers,” Proc. 7th AoM/IAoM Int’l Conf.
Computer Science, 1999, 324–329.

[8] Fitting, M., “Destructive Modal Resolution,” J. Logic
and Computation, 1(1), 1990, 83–97.

[9] Lange, B.D., Oshima, M., Programming and Deploy-
ing Java Mobile Agents with Aglets, 1998.

[10] Milner, R., Communicating and Mobile Systems: the
Pi-Calculus, 1999.

[11] Orgun, M.A., Ma, W., An Overview of Temporal
and Modal Logic Programming, Proc. 1st Int’l Conf.
Temporal Logic, 1994.

[12] Davies, R, Pfenning, F., “A modal analysis of staged
computation,” Proc. 1996 Principles of Programming
Lsanguages, 1996, 258–270.

[13] Hennesy, M., Riely, J., “Resource Access Control in
Systems of Mobile Agents,” Proc. High-Level Con-
current Languages ’98, ENTCS 16.3, 1998.

[14] Riely, J., Hennessy, M., “A Typed Language for Dis-
tributed Mobile Processes,” Proc. 1998 Principles of
Programming Languages,1998, 378-390.

[15] Sistla, P, A., Zuck, L.D., Reasoning in a restricted
temporal logic, Information and Computation 102(2),
1993, 167–195.

[16] Taguchi, K., Sato, H., “TeleLog, A Mobile Logic
Programming Language,” Proc. 2001 Joint Symp.
Parallel Processing, 2001, 213–220.

[17] Tarau, P., “Jinni: Intelligent Mobile Agent Pro-
gramming at the Intersection of Java and Prolog”
http://www.binnetcorp.com/Jinni

[18] Tarau, P., Dahl, V., “Mobile Threads through
First Order Continuations,” Proc. APPAL-GULP-
PRODE’98, 1998.

[19] White, J.E., “Telescript Technology: Mobile
Agents,” Software Agents, 1997.

[20] Wickline, P., Lee, P., Pfenning, F., “Run-time Code
Generation and Modal-ML,” Proc. 1998 Program-
ming Languages Design and Implementation, 1998,
224–235.

