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Abstract — Today, compilers play a role of bridge between 
high/abstract level specification of computation/algorithm 
and low/concrete level of target architectures. They are 
responsible for both effectively implementing high level 
programming concepts and exploiting very concrete high 
performance engines, where optimizations are very crucial 
in every respect. However, the growing complexity of 
modern optimizations causes the proof of correctness 
complicated, and also makes guarantee of performance 
optimality almost impossible. In this paper, we propose 
optimization verifying compilers. They automatically prove 
the correctness of optimizations. They also guarantee the 
optimality of  generated code in performance.   
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I. INTRODUCTION 

Today, compilers play a role of bridge between 
high/abstract level specification of computation/algorithm 
and low/concrete level of target architectures. Since 
programming languages have been a central issue in 
computer science, many useful and complicated concepts 
have been coined. As the result, modern programming 
languages can represent abstract and complicated 
concepts such as type, objects and aspects. Effective 
implementation of such concepts is left to compilers. On 
the other hand, the complexity of modern computer 
architectures is continuously growing. Exploiting high 
performance engines in modern CPUs and systems built 
on them such as parallel computers is also left to 
compilers. The gap between programming languages and 
architectures is unrecoverable unless we have appropriate 
remedies. In other words, modern compilers are 
responsible for both effectively implementing abstract 
concepts and exploiting very concrete high performance 
engines.  

In modern compilers, optimizers occupy the central 
position in every respect. Optimizers are a set of program 
transformers that are expected to show performance gain 
while preserving the semantics of programs. In the study 
of compilers, many optimization techniques have been 
investigated. Peep-hole optimizations are no longer 
attractive to researchers because their effects are very 
much limited. Instead, systematic optimizations through 
program analysis are today’s concern. They include 
partial redundancy elimination, global value numbering 

and code hoisting, some of which are based on problem 
description by using multiple dataflow equations. As the 
consequence, the optimization description has become 
much complicated. 

With larger complexity of description of optimizations, 
their effect has become harder to analyze. Optimizations 
must be discussed in terms of performance improvement 
together with the correctness of their application. 
However, we cannot be optimistic about it. As for the 
performance, it is well known that two optimizations can 
interfere with each other. For example, aggressive register 
allocation can make the register pressure higher, and it 
can cause other optimization unavailable. Up to now, 
heuristics is the only solution. As for the correctness of 
optimization, for example, there has been, and will be 
reported a long list of bugs of GNU-C. In theory, an 
optimization is beyond a simple term rewriting system. 
Conditions for applying optimizations are so complicated 
that term rewriting theory does not suffice for the analysis 
of optimizations. 

Therefore, we need formalism. Formalism is an 
indispensable tool for us first to analyze optimizations, 
and second to write a proof of correctness on it, and 
finally to make some guarantee of performance optimality. 

In this paper, we propose optimization verifying 
compilers. Optimization verifying compilers guarantee that 
codes are generated through correct optimizations, and 
hence that they are correct in the sense that the semantics 
of optimized codes and that of unoptimized codes are the 
same. Furthermore, they also guarantee that the generated 
codes are optimal in performance. In these two points, 
optimization verifying compilers are based on a formal 
system. The verifications of correctness and performance 
optimality are done on the formal base. Of course, 
because the verifications for all programs are infeasible in 
theory, we must restrict our target to an appropriate class 
of programs. However, the class is expected to be general 
enough, and we believe that optimization verifying 
compilers are attractive both in theory and in practice. We 
also believe that they are essential for building safe and 
secure society empowered by advanced electronics. 

The rest of this paper is organized as: Section II is 
devoted to the definitions and outline description of 
optimization verifying compilers. In Section  III, we 
discuss the correctness of optimization. In Section IV, we 
study formal performance model and the way of 



guaranteeing optimality. In Section V, we survey related 
work. In Section VI, we give a summary of this paper. 

II. OPTIMIZATION VERIFYING COMPILERS 

Optimization verifying compilers are compilers that 
automatically verify two essential requirements to 
optimizers: correctness of the program transformation and 
guarantee of performance improvement. 

Our project is inspired by “verifying compilers” of Hoare 
[4]. Let us first review verifying compilers. 

 
A. Hoare’s Verifying Compilers 
 
We summarize the outline of verifying compilers in Fig. 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Outline of Verifying Compilers. 
 
Hoare (implicitly or exp licitly) expects that a program is 

given with expected semantics, in other words, 
specification. A verifying compiler is expected to prove 
the correctness of a program in terms of its associated 
specification. As its result, a generated code is augmented 
with some proof of correctness (certificate). The idea of  
verifying a code for safe execution has become famous 
since Java processors implemented a verifier for incoming 
Java bytecodes. Giving a certificate/proof  is its natural 
extension. One point to be noted is that the verification 
must be done with respect to some fixed program 
semantics. Java’s success partly owes to the simplicity of 
the program semantics: it can check just out-of-memory 
references. If the semantics reflects usual mathematics, 
proofs become much complicated. How to manage this 
complexity is really challenging. 

 
B.  Optimization Verifying Compilers 

 
 Our optimization compilers inherit much of Hoare’s 
verifying compilers. Our focus is put on optimizers inside 

compilers. For optimizers, because preserving semantics 
and guaranteeing performance improvement after 
transformations are two essential requirements, we 
concentrate on “verifying” these two features.  
 
Preserving Semantics 
 
In our project, we do not care about a specification of a 

given program. Instead, we identify the semantics as the 
original program. Besides this simplification, we consider 
the framework of program semantics as an ordinary 
operational semantics. Therefore, what concerns is that an 
optimizer does not give any change with respect to the 
operational semantics. The proof  is divided into two 
classes. One is to prove that an original code and the 
transformed code have the same semantics, and the other 
is to give a proof that an optimizer does correct 
transformation. Both kinds of verifications are our 
concern (summarized in the left half of Fig. 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Outline of Optimization Verifying Compilers 
 
Performance Improvement 
 

Performance is essential for evaluating optimizers 
especially for architecture oriented compiler writers. 
However, because the complexity of modern CPU 
architecture is soaring, it is a hard job to guarantee that an 
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optimization really improves performance. Therefore, we 
must build an effective performance model so as to give a 
proof that a transformed code really improves 
performance. Moreover, the model must be discussed to 
enable discussions of features of optimizations. For 
example, if we can prove that a code is the best in 
performance, we do not need any further optimization. 
Conventional performance models based on simulations 
that are essential tools for designing CPUs are not 
enough. Performance verifying optimizers are shown in 
the right half of Fig. 2.  

III. TYPE SYSTEM FOR PROVING CORRECTNESS 

For proving that a given transformation preserves 
semantics, many systems and logics have been proposed. 
Among those, model checking and temporal logic are 
major systems for manipulating the change of states that 
exactly represents operational semantics.  

In our verification system, we build a type system for 
analyzing operational semantics. Type theory has 
originally been developed for analyzing the 
correspondence between mathematical logic (proof) and 
program execution. Recently, it is proved to be a powerful 
tool for program analysis, and many concepts of resource 
usage are analyzed as types. In this section, we review 
[10]. In our system, the target of analysis is 
“assignment, ” which, together with jumps, is a major 
behavior of program execution. 
 
A. Type System Definition 

 
First, we define our simplified assembly language: 
 
Definition. We define our assembly language as in 

Table 1. A program execution is described as change of 
values of finite variables. 

 
Table 1. An Assembly Language 
 
i∈ Integers 
x0,x1,…,y0,y1,…∈Vars 
l∈Labels  
 
v ::= x | i                       (Value) 
 
ins ::= aop|mov|jump          (Instruction) 
aop ::= add x,y,v|sub x,y,v|mul x,y,v|div x,y,v| 

mod x,y,v 
mov ::= mov x,v|ssa x0,{l1:x1, l2:x2} 
jump ::= beq x,v,l|bg x,v,l|bge x,v,l|bl x,v,l|…|jmp l 

ret x 
 
I::= φ| I;ins                     (Instruction Sequence) 
B::= I|I;jump                     (Basic Block) 
 
P::= l1:B1;l2:B2;…ln:Bn                 (Program) 

 
 

We restrict our attention to SSA forms. Variables are 
represented by its name together with suffices. There is at 
most one assignment given to a given variable. To 
represent multiple assignment to a given variable in a 
program execution,  aφ assignment is defined at join 
points of program execution. In our assembly language, 
ssa instruction in Table 1 corresponds to φ . In our 
system, variables providing values are given with labels 
from which control comes. This is essential in giving its 
dynamic semantics as operational semantics. 

 
Definition. Dynamic semantics is given as the change of 

states. A state is defined as a pair of program counter and 
a function mapping variables to values. A special state 
HALT is given. When ret instruction is executed, the state 
falls into HALT. 

 
We define our type system for optimization verifying 

compilers. 
 
Definition. We define our type system as in Table 2. 

Type inference rules are given in Table 3. 
 

Table 2. Types 
 
Types 
α ∈ Type Vars 
τ ::= α|T|int(i)| 

(τ0, τ1)+|(τ0,τ1)-|(τ0,τ1)*| 
(τ0,τ1)/|(τ0,τ1)%| 
{L0:τ0, L1:τ1}|μα.{L0:τ0, L1:τ1} 
 

  Environment 
  Γ ::= φ| Γ, x:τ 

 
The type int(i) is the singleton type representing the 

singleton set {i}. For each arithmetic operation, there is 
defined a corresponding type. For the ssa instruction, 
there is defined an SSA type representing join of values. 
Finally, μ-type is defined. A type variable αis μ-bound 
in typeμα.{L0:τ0, L1:τ1}. 

As a special type environment, we define Γ0 as types 
for 0-th variables. In other words, Γ0 specifies types of 
initial values. Using typing rules in Table 3, there is 
uniquely defined Γ0 for a given program. 

Type inference is classified into two categories: |- Γ for 
valid type environment, and Γ  P|- x:τ  for valid type 
inference for a variable in a given program P. The 
definition is a usual one except the rule (cut). (cut) 
corresponds to substitution of types. Actually, (cut) 
enables multiple type inference for a variable. To make the 
resultant type unique, we define the (decidable) type 
equality in the next Definition. 
 



 
Definition. Let a type τ be given. We define its regular 
tree T(τ) as:  
T((τ0,τ1)op) = (op){T(τ0),T(τ1)} 
T(int(i)) = (int(i)) 
T(μα.τ) = T(τ)[μα.τ/α] 
 
Then, we define τ = σ as T(τ) = T(σ). 
 
The next theorem validates this definition. 
 
Theorem. For a program P and a type environment Γ, if 
ΓP |- x:τ and ΓP |- x:σ, then τ = σ. 
 
Example. Let a program P be given as: 
 

L0: mov x0, 0; L1: ssa x1, (L0:x0, L1, x2); 
add x2,x1,1; bl x2,100,L1. 

 
Under the type environment Γ0 = φ, we have 
Γ0 P|- x1:μα .{L0:int(0), L1:(α ,int(1))+}. Actually, we 
have other inferences of  the type of x0 such as {L0:int(0),
μα.{L0:int(0),(α,int(1))+}}, but they are all the same. 
 

B.  Analysis of Optimizations using our Type System. 
  
Definition. Given programs P and Q, we define P ～Q as P 
and Q are bisimilar in state change. 
 

To state soundness of our system, we need structural 
equivalence. Here, a program is understood as a network 
of blocks. At the end of a block, there is a jump 
instruction. 
 
Definition. Two programs P and Q are structurally 
equivalent if they have bijective correspondence as a 
network of blocks, and furthermore, the last jump 
instructions in corresponding blocks are the same. 
 

Although structural equivalence looks restrictive, we 
see almost all global optimizations preserve structures of 
programs, and therefore two programs before and after 
optimizations are structurally equivalent. 
 

We define CV(P) for a program P as variables that 
appear in jump instructions in P except ret. Furthermore, 
we call variables live if they are concern of analysis. We 
define LV(P) for P as a set of live variables. Note that an 
arbitrary variable can be live. 

Our soundness theorem is stated as follows: 
 
Theorem (soundness).  Let structurally equivalent 
programs P and Q be given. Let CV(P) = CV(Q) and LV(P) 
= LV(Q). Let Γ0 for P and Q be denoted as PΓ0 and QΓ
0 respectively. We assume that if for each variable x∈
CV(P)∪LV(P): PΓ0 P|- x:τ0 and QΓ0 Q|- x:τ1, then we 
have τ0 = τ1. Then P～Q. 
 

The soundness theorem is the basis of verifying 
correctness of optimizations. As its immediate 
consequence, we can verify dead code elimination. 
 
Corollary. Let Q be P whose dead codes are eliminated. 
Then, P～Q. 
 

To prove the correctness of other optimizations that 
can change assignment types such as constant folding, 
we must extend the soundness theorem to that some order 
on types is included. 
 

IV. GUARANTEE OF PERFORMANCE IMPROVEMENT  

Our second goal is to guarantee performance 
improvement. Because of the complexity of modern CPU 
architectures, to prove that an optimization really 
improves performance is a hard job. First, we need precise 
performance model. Conventional simulation-based 
models are prohibitive because of high computational 
cost for calculating performance. On the other hand, old 
simple models are not sufficient if they cannot explain 
performance gain. Moreover, if an optimization is 
parametric in some factors, we need a symbolic model to 
enable a symbolic analysis. Furthermore, if an optimization 
allows multiple heuristics, we need to evaluate each 

Table 3. Typing Rules 
 

 (Valid Type Environment) 
è     |-   

 
 |- Γ       not x ∈Dom(Γ) α fresh  è      |- Γ, x:α 
 
 
(Valid Type Inference) 
 |-Γ è Γ P|- i:int(i) 
 |-Γ  x: τ∈Γè  Γ P|- x:τ 
 
 aop x,y,v ∈P   Γ P|- y:τ1, v:τ2  

è Γ P|- x:(τ1,τ2)aop 
(for each aop add, sub, mul, div, mod) 

mov x,v ∈P  Γ P|- v:τ  è Γ P|- x:τ 
 
ssa x,(L0:x1,L1:x2) ∈ P  Γ P|- x1:τ1, x2:τ2 
                 è Γ P|- x:{L0:τ1, L1:τ2} 
 
Γ,x:α,Δ P|- x: {L0:τ1, L1:τ2} 
     è Γ,Δ P|-  x:μα.{L0:τ1, L1:τ2} 
 
Γ P|- x:τ1   Δ,x:α,Θ P|- y:τ2 
     è Γ+(Δ,Θ) P|- τ2[τ1/α] 
                (cut) 



heuristics, or to give the best solution if we do not like to 
be bothered by heuristics. 

In this section, we discuss our preliminary results on 
guarantee of performance improvement. 

A. Precise Performance Model 

We need a precise performance model that can explain 
performance gain as the result of exploiting high 
performance engines of modern CPU architectures. Here, 
we take loop unrolling as an example of performance-
sensitive optimization [18]. Today, the effect of loop 
unrolling is explained by instruction level parallelism (ILP), 
not by loop overhead reduction. Therefore, we need a 
precise ILP model. 
 
Definition (unrolling shape). Let a loop be given. Among 
instructions of the loop, we only consider memory 
operations and arithmetic operations, and omit loop 
control/jump operations. The set of the instructions are 
given as Ins0 + Δ・n for unrolling factor n.  We schedule 
them according to delay and throughput of each 
instruction. We call the constructed diagram “unrolling 
shape.” 
 

Note that unrolling shapes are simplified scheduling 
diagram of instructions, but that they are easy to compute, 
and are accurate in the sense of performance prediction. 
Actually, from the shape, we can compute the cycles 
taken by the loop as the function of unrolling factor. Our 
experience shows that unrolling shapes effectively  work. 
Fig. 3 shows our experiment for a simple loop on SPARC. 
We can see that predicting the effect of loop unrolling is 
successful. 

Fig. 3. Prediction of Effect of Loop Unrolling for a Simple 
Loop by Using Unrolling Shape. 
 

Unrolling shape is originally studied for in-order 
processors. However, we have found that it can be 
applied also to out-of-order processors. On Alpha, we can 
construct a predictive performance model of loop 
unrolling using unrolling shape [15]. 

B. Guarantee of Performance Improvement 

If an accurate performance model is given, the next job is 
to find a solution that is definitely better than the original 
code. Traditionally, because most architecture-oriented 
optimizations are computationally hard to find the 
optimum solution, heuristics must be adopted to obtain a 
solution in practical time. Performance-critical  
optimizations such as register allocation, instruction 
scheduling, and data layout are all NP-complete problems. 
Good heuristics are intensively studied to obtain near-
optimal solutions in practical time. However, the strategy 
of  heuristics has the essential flaw: it gives no guarantee 
of performance improvement, nor it says anything about 
the quality of solutions. Therefore, a given heuristics is 
evaluated for some arbitrary collected benchmark 
programs. Comparison between heuristic methods is 
inevitably comparative.  

Recent soaring of computer performance gives an 
opportunity: finding the best solution for problems of 
reasonable size in reasonable time is no more necessarily 
impossible. If we can find the best solution, we can also 
evaluate heuristics with respect to it. In other words, we 
can have an absolute evaluation. 

Problem formulation using integer programming is a 
promising direction in this sense. In our group, we have 
succeeded in defining a performance model of Pentium4 
considering memory hierarchy of register/L1 cache/L2 
cache/memory, and behaviors of instructions taking 
memory as operands in the framework of integer 
framework [5]. Using this model, we have improved the 
register allocation of GCC 3.3, and the performance has 
been improved up to 2%. This also indicates that the 
register allocation heuristics of GCC 3.3 is quite good. 

V. RELATED WORK 

The term of “verifying compiler” was coined by Hoare 
[4]. Much of our project is inspired by his project. His 
“verifying compiler” aims at verifying the correctness of a 
program at compile time. It is a very aggressive, but 
challenging project. We put focus on verifying two most 
significant requirements of optimizers.  

There are many formal systems proposed for analyzing 
optimizations [7,8,13]. Translation validation [13,14,19] is 
proved powerful for verifying the correctness. The 
strategy of translation validation is to check whether two 
programs are bisimilar on simple operational semantics. 
Lacey [7] has applied temporal logic to express the 
condition under which an optimization can safely be 
applied. Applying type system to program analysis on 
low-level languages has started in TAL project [11,12]. 
The type system of TAL can express that an instruction is 
safe to execute in the sense that it does not access any 
out-of-memory region. Matsuno [9] extends it to allow 
arithmetic in calculating an address. 

Accuracy of performance model is strongly required 
especially to large programs. Kerbyson [6] aims at 
modeling patterns of communications and computation, 
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and has a predictive model. On an accurate model, we can 
build a firm base of optimum optimization. In particular, 
the Integer Programming method provides powerful 
framework. Many problems such as register allocation 
[1,3], instruction scheduling [17] and data layout [2] are 
formalized by using Integer Programming. The remaining 
work is to solve the problem to obtain the best solution. 
Adaptive compilation and auto-tuning [16] are variants for 
finding the best solution. However, they are just 
accumulated know-how, and do not need any science. 

VI. CONCLUDING REMARKS 

In this paper, we have presented optimization verifying 
compilers. First, we have explained the grand design of 
our project. In Section III, we have studied the type 
system on which we can verify semantics-preservation. In 
Section IV, we have discussed the accuracy of 
performance model, and guarantee of performance 
improvement by obtaining the optimum solution using the 
integer programming. Our project aims at assuring 
security of processors of programming languages in very 
scientific way. Our primary concern is on theoretical side, 
but we believe that it will practically give a firm base for 
the future IT infrastructure.  
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