
Optimization Verifying Compilers

SATO Hiroyuki

Information Technology Center/Department of Frontier Informatics,
The University of Tokyo.

E-mail: schuko@cc.u-tokyo.ac.jp

Abstract — Today, compilers play a role of bridge between
high/abstract level specification of computation/algorithm
and low/concrete level of target architectures. They are
responsible for both effectively implementing high level
programming concepts and exploiting very concrete high
performance engines, where optimizations are very crucial
in every respect. However, the growing complexity of
modern optimizations causes the proof of correctness
complicated, and also makes guarantee of performance
optimality almost impossible. In this paper, we propose
optimization verifying compilers. They automatically prove
the correctness of optimizations. They also guarantee the
optimality of generated code in performance.

Keywords — Compiler Optimization, Verification,
Program Analysis, Performance Model.

I. INTRODUCTION

Today, compilers play a role of bridge between
high/abstract level specification of computation/algorithm
and low/concrete level of target architectures. Since
programming languages have been a central issue in
computer science, many useful and complicated concepts
have been coined. As the result, modern programming
languages can represent abstract and complicated
concepts such as type, objects and aspects. Effective
implementation of such concepts is left to compilers. On
the other hand, the complexity of modern computer
architectures is continuously growing. Exploiting high
performance engines in modern CPUs and systems built
on them such as parallel computers is also left to
compilers. The gap between programming languages and
architectures is unrecoverable unless we have appropriate
remedies. In other words, modern compilers are
responsible for both effectively implementing abstract
concepts and exploiting very concrete high performance
engines.

In modern compilers, optimizers occupy the central
position in every respect. Optimizers are a set of program
transformers that are expected to show performance gain
while preserving the semantics of programs. In the study
of compilers, many optimization techniques have been
investigated. Peep-hole optimizations are no longer
attractive to researchers because their effects are very
much limited. Instead, systematic optimizations through
program analysis are today’s concern. They include
partial redundancy elimination, global value numbering

and code hoisting, some of which are based on problem
description by using multiple dataflow equations. As the
consequence, the optimization description has become
much complicated.

With larger complexity of description of optimizations,
their effect has become harder to analyze. Optimizations
must be discussed in terms of performance improvement
together with the correctness of their application.
However, we cannot be optimistic about it. As for the
performance, it is well known that two optimizations can
interfere with each other. For example, aggressive register
allocation can make the register pressure higher, and it
can cause other optimization unavailable. Up to now,
heuristics is the only solution. As for the correctness of
optimization, for example, there has been, and will be
reported a long list of bugs of GNU-C. In theory, an
optimization is beyond a simple term rewriting system.
Conditions for applying optimizations are so complicated
that term rewriting theory does not suffice for the analysis
of optimizations.

Therefore, we need formalism. Formalism is an
indispensable tool for us first to analyze optimizations,
and second to write a proof of correctness on it, and
finally to make some guarantee of performance optimality.

In this paper, we propose optimization verifying
compilers. Optimization verifying compilers guarantee that
codes are generated through correct optimizations, and
hence that they are correct in the sense that the semantics
of optimized codes and that of unoptimized codes are the
same. Furthermore, they also guarantee that the generated
codes are optimal in performance. In these two points,
optimization verifying compilers are based on a formal
system. The verifications of correctness and performance
optimality are done on the formal base. Of course,
because the verifications for all programs are infeasible in
theory, we must restrict our target to an appropriate class
of programs. However, the class is expected to be general
enough, and we believe that optimization verifying
compilers are attractive both in theory and in practice. We
also believe that they are essential for building safe and
secure society empowered by advanced electronics.

The rest of this paper is organized as: Section II is
devoted to the definitions and outline description of
optimization verifying compilers. In Section III, we
discuss the correctness of optimization. In Section IV, we
study formal performance model and the way of

guaranteeing optimality. In Section V, we survey related
work. In Section VI, we give a summary of this paper.

II. OPTIMIZATION VERIFYING COMPILERS

Optimization verifying compilers are compilers that
automatically verify two essential requirements to
optimizers: correctness of the program transformation and
guarantee of performance improvement.

Our project is inspired by “verifying compilers” of Hoare
[4]. Let us first review verifying compilers.

A. Hoare’s Verifying Compilers

We summarize the outline of verifying compilers in Fig. 1.

Fig. 1. Outline of Verifying Compilers.

Hoare (implicitly or exp licitly) expects that a program is

given with expected semantics, in other words,
specification. A verifying compiler is expected to prove
the correctness of a program in terms of its associated
specification. As its result, a generated code is augmented
with some proof of correctness (certificate). The idea of
verifying a code for safe execution has become famous
since Java processors implemented a verifier for incoming
Java bytecodes. Giving a certificate/proof is its natural
extension. One point to be noted is that the verification
must be done with respect to some fixed program
semantics. Java’s success partly owes to the simplicity of
the program semantics: it can check just out-of-memory
references. If the semantics reflects usual mathematics,
proofs become much complicated. How to manage this
complexity is really challenging.

B. Optimization Verifying Compilers

 Our optimization compilers inherit much of Hoare’s
verifying compilers. Our focus is put on optimizers inside

compilers. For optimizers, because preserving semantics
and guaranteeing performance improvement after
transformations are two essential requirements, we
concentrate on “verifying” these two features.

Preserving Semantics

In our project, we do not care about a specification of a

given program. Instead, we identify the semantics as the
original program. Besides this simplification, we consider
the framework of program semantics as an ordinary
operational semantics. Therefore, what concerns is that an
optimizer does not give any change with respect to the
operational semantics. The proof is divided into two
classes. One is to prove that an original code and the
transformed code have the same semantics, and the other
is to give a proof that an optimizer does correct
transformation. Both kinds of verifications are our
concern (summarized in the left half of Fig. 2).

Fig. 2. Outline of Optimization Verifying Compilers

Performance Improvement

Performance is essential for evaluating optimizers
especially for architecture oriented compiler writers.
However, because the complexity of modern CPU
architecture is soaring, it is a hard job to guarantee that an

Source program

Compiler
Program
semantics

Expected
semantics

verification

Code
generator

Generated code
certificate

Source program

Operational
semantics

Performance
Model

Code 1

Code 0

Code 2

Generated code

Optimizer 1

Optimizer 2

Same
Semantics

verified

Truly
Improve
Performance

optimization really improves performance. Therefore, we
must build an effective performance model so as to give a
proof that a transformed code really improves
performance. Moreover, the model must be discussed to
enable discussions of features of optimizations. For
example, if we can prove that a code is the best in
performance, we do not need any further optimization.
Conventional performance models based on simulations
that are essential tools for designing CPUs are not
enough. Performance verifying optimizers are shown in
the right half of Fig. 2.

III. TYPE SYSTEM FOR PROVING CORRECTNESS

For proving that a given transformation preserves
semantics, many systems and logics have been proposed.
Among those, model checking and temporal logic are
major systems for manipulating the change of states that
exactly represents operational semantics.

In our verification system, we build a type system for
analyzing operational semantics. Type theory has
originally been developed for analyzing the
correspondence between mathematical logic (proof) and
program execution. Recently, it is proved to be a powerful
tool for program analysis, and many concepts of resource
usage are analyzed as types. In this section, we review
[10]. In our system, the target of analysis is
“assignment, ” which, together with jumps, is a major
behavior of program execution.

A. Type System Definition

First, we define our simplified assembly language:

Definition. We define our assembly language as in

Table 1. A program execution is described as change of
values of finite variables.

Table 1. An Assembly Language

i∈ Integers
x0,x1,…,y0,y1,…∈Vars
l∈Labels

v ::= x | i (Value)

ins ::= aop|mov|jump (Instruction)
aop ::= add x,y,v|sub x,y,v|mul x,y,v|div x,y,v|

mod x,y,v
mov ::= mov x,v|ssa x0,{l1:x1, l2:x2}
jump ::= beq x,v,l|bg x,v,l|bge x,v,l|bl x,v,l|…|jmp l

ret x

I::= φ| I;ins (Instruction Sequence)
B::= I|I;jump (Basic Block)

P::= l1:B1;l2:B2;…ln:Bn (Program)

We restrict our attention to SSA forms. Variables are
represented by its name together with suffices. There is at
most one assignment given to a given variable. To
represent multiple assignment to a given variable in a
program execution, aφ assignment is defined at join
points of program execution. In our assembly language,
ssa instruction in Table 1 corresponds to φ . In our
system, variables providing values are given with labels
from which control comes. This is essential in giving its
dynamic semantics as operational semantics.

Definition. Dynamic semantics is given as the change of

states. A state is defined as a pair of program counter and
a function mapping variables to values. A special state
HALT is given. When ret instruction is executed, the state
falls into HALT.

We define our type system for optimization verifying

compilers.

Definition. We define our type system as in Table 2.

Type inference rules are given in Table 3.

Table 2. Types

Types
α ∈ Type Vars
τ ::= α|T|int(i)|

(τ0, τ1)+|(τ0,τ1)-|(τ0,τ1)*|
(τ0,τ1)/|(τ0,τ1)%|
{L0:τ0, L1:τ1}|μα.{L0:τ0, L1:τ1}

 Environment
 Γ ::= φ| Γ, x:τ

The type int(i) is the singleton type representing the

singleton set {i}. For each arithmetic operation, there is
defined a corresponding type. For the ssa instruction,
there is defined an SSA type representing join of values.
Finally, μ-type is defined. A type variable αis μ-bound
in typeμα.{L0:τ0, L1:τ1}.

As a special type environment, we define Γ0 as types
for 0-th variables. In other words, Γ0 specifies types of
initial values. Using typing rules in Table 3, there is
uniquely defined Γ0 for a given program.

Type inference is classified into two categories: |- Γ for
valid type environment, and Γ P|- x:τ for valid type
inference for a variable in a given program P. The
definition is a usual one except the rule (cut). (cut)
corresponds to substitution of types. Actually, (cut)
enables multiple type inference for a variable. To make the
resultant type unique, we define the (decidable) type
equality in the next Definition.

Definition. Let a type τ be given. We define its regular
tree T(τ) as:
T((τ0,τ1)op) = (op){T(τ0),T(τ1)}
T(int(i)) = (int(i))
T(μα.τ) = T(τ)[μα.τ/α]

Then, we define τ = σ as T(τ) = T(σ).

The next theorem validates this definition.

Theorem. For a program P and a type environment Γ, if
ΓP |- x:τ and ΓP |- x:σ, then τ = σ.

Example. Let a program P be given as:

L0: mov x0, 0; L1: ssa x1, (L0:x0, L1, x2);
add x2,x1,1; bl x2,100,L1.

Under the type environment Γ0 = φ, we have
Γ0 P|- x1:μα .{L0:int(0), L1:(α ,int(1))+}. Actually, we
have other inferences of the type of x0 such as {L0:int(0),
μα.{L0:int(0),(α,int(1))+}}, but they are all the same.

B. Analysis of Optimizations using our Type System.

Definition. Given programs P and Q, we define P ～Q as P
and Q are bisimilar in state change.

To state soundness of our system, we need structural
equivalence. Here, a program is understood as a network
of blocks. At the end of a block, there is a jump
instruction.

Definition. Two programs P and Q are structurally
equivalent if they have bijective correspondence as a
network of blocks, and furthermore, the last jump
instructions in corresponding blocks are the same.

Although structural equivalence looks restrictive, we
see almost all global optimizations preserve structures of
programs, and therefore two programs before and after
optimizations are structurally equivalent.

We define CV(P) for a program P as variables that
appear in jump instructions in P except ret. Furthermore,
we call variables live if they are concern of analysis. We
define LV(P) for P as a set of live variables. Note that an
arbitrary variable can be live.

Our soundness theorem is stated as follows:

Theorem (soundness). Let structurally equivalent
programs P and Q be given. Let CV(P) = CV(Q) and LV(P)
= LV(Q). Let Γ0 for P and Q be denoted as PΓ0 and QΓ
0 respectively. We assume that if for each variable x∈
CV(P)∪LV(P): PΓ0 P|- x:τ0 and QΓ0 Q|- x:τ1, then we
have τ0 = τ1. Then P～Q.

The soundness theorem is the basis of verifying
correctness of optimizations. As its immediate
consequence, we can verify dead code elimination.

Corollary. Let Q be P whose dead codes are eliminated.
Then, P～Q.

To prove the correctness of other optimizations that
can change assignment types such as constant folding,
we must extend the soundness theorem to that some order
on types is included.

IV. GUARANTEE OF PERFORMANCE IMPROVEMENT

Our second goal is to guarantee performance
improvement. Because of the complexity of modern CPU
architectures, to prove that an optimization really
improves performance is a hard job. First, we need precise
performance model. Conventional simulation-based
models are prohibitive because of high computational
cost for calculating performance. On the other hand, old
simple models are not sufficient if they cannot explain
performance gain. Moreover, if an optimization is
parametric in some factors, we need a symbolic model to
enable a symbolic analysis. Furthermore, if an optimization
allows multiple heuristics, we need to evaluate each

Table 3. Typing Rules

 (Valid Type Environment)
è |-

 |- Γ not x ∈Dom(Γ) α fresh è |- Γ, x:α

(Valid Type Inference)
 |-Γ è Γ P|- i:int(i)
 |-Γ x: τ∈Γè Γ P|- x:τ

 aop x,y,v ∈P Γ P|- y:τ1, v:τ2

è Γ P|- x:(τ1,τ2)aop
(for each aop add, sub, mul, div, mod)

mov x,v ∈P Γ P|- v:τ è Γ P|- x:τ

ssa x,(L0:x1,L1:x2) ∈ P Γ P|- x1:τ1, x2:τ2
 è Γ P|- x:{L0:τ1, L1:τ2}

Γ,x:α,Δ P|- x: {L0:τ1, L1:τ2}
 è Γ,Δ P|- x:μα.{L0:τ1, L1:τ2}

Γ P|- x:τ1 Δ,x:α,Θ P|- y:τ2
 è Γ+(Δ,Θ) P|- τ2[τ1/α]
 (cut)

heuristics, or to give the best solution if we do not like to
be bothered by heuristics.

In this section, we discuss our preliminary results on
guarantee of performance improvement.

A. Precise Performance Model

We need a precise performance model that can explain
performance gain as the result of exploiting high
performance engines of modern CPU architectures. Here,
we take loop unrolling as an example of performance-
sensitive optimization [18]. Today, the effect of loop
unrolling is explained by instruction level parallelism (ILP),
not by loop overhead reduction. Therefore, we need a
precise ILP model.

Definition (unrolling shape). Let a loop be given. Among
instructions of the loop, we only consider memory
operations and arithmetic operations, and omit loop
control/jump operations. The set of the instructions are
given as Ins0 + Δ・n for unrolling factor n. We schedule
them according to delay and throughput of each
instruction. We call the constructed diagram “unrolling
shape.”

Note that unrolling shapes are simplified scheduling
diagram of instructions, but that they are easy to compute,
and are accurate in the sense of performance prediction.
Actually, from the shape, we can compute the cycles
taken by the loop as the function of unrolling factor. Our
experience shows that unrolling shapes effectively work.
Fig. 3 shows our experiment for a simple loop on SPARC.
We can see that predicting the effect of loop unrolling is
successful.

Fig. 3. Prediction of Effect of Loop Unrolling for a Simple
Loop by Using Unrolling Shape.

Unrolling shape is originally studied for in-order
processors. However, we have found that it can be
applied also to out-of-order processors. On Alpha, we can
construct a predictive performance model of loop
unrolling using unrolling shape [15].

B. Guarantee of Performance Improvement

If an accurate performance model is given, the next job is
to find a solution that is definitely better than the original
code. Traditionally, because most architecture-oriented
optimizations are computationally hard to find the
optimum solution, heuristics must be adopted to obtain a
solution in practical time. Performance-critical
optimizations such as register allocation, instruction
scheduling, and data layout are all NP-complete problems.
Good heuristics are intensively studied to obtain near-
optimal solutions in practical time. However, the strategy
of heuristics has the essential flaw: it gives no guarantee
of performance improvement, nor it says anything about
the quality of solutions. Therefore, a given heuristics is
evaluated for some arbitrary collected benchmark
programs. Comparison between heuristic methods is
inevitably comparative.

Recent soaring of computer performance gives an
opportunity: finding the best solution for problems of
reasonable size in reasonable time is no more necessarily
impossible. If we can find the best solution, we can also
evaluate heuristics with respect to it. In other words, we
can have an absolute evaluation.

Problem formulation using integer programming is a
promising direction in this sense. In our group, we have
succeeded in defining a performance model of Pentium4
considering memory hierarchy of register/L1 cache/L2
cache/memory, and behaviors of instructions taking
memory as operands in the framework of integer
framework [5]. Using this model, we have improved the
register allocation of GCC 3.3, and the performance has
been improved up to 2%. This also indicates that the
register allocation heuristics of GCC 3.3 is quite good.

V. RELATED WORK

The term of “verifying compiler” was coined by Hoare
[4]. Much of our project is inspired by his project. His
“verifying compiler” aims at verifying the correctness of a
program at compile time. It is a very aggressive, but
challenging project. We put focus on verifying two most
significant requirements of optimizers.

There are many formal systems proposed for analyzing
optimizations [7,8,13]. Translation validation [13,14,19] is
proved powerful for verifying the correctness. The
strategy of translation validation is to check whether two
programs are bisimilar on simple operational semantics.
Lacey [7] has applied temporal logic to express the
condition under which an optimization can safely be
applied. Applying type system to program analysis on
low-level languages has started in TAL project [11,12].
The type system of TAL can express that an instruction is
safe to execute in the sense that it does not access any
out-of-memory region. Matsuno [9] extends it to allow
arithmetic in calculating an address.

Accuracy of performance model is strongly required
especially to large programs. Kerbyson [6] aims at
modeling patterns of communications and computation,

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10

Unrolling Factor

U
n
ro

lli
n
g

E
ff

e
c
t

real

predict

max

and has a predictive model. On an accurate model, we can
build a firm base of optimum optimization. In particular,
the Integer Programming method provides powerful
framework. Many problems such as register allocation
[1,3], instruction scheduling [17] and data layout [2] are
formalized by using Integer Programming. The remaining
work is to solve the problem to obtain the best solution.
Adaptive compilation and auto-tuning [16] are variants for
finding the best solution. However, they are just
accumulated know-how, and do not need any science.

VI. CONCLUDING REMARKS

In this paper, we have presented optimization verifying
compilers. First, we have explained the grand design of
our project. In Section III, we have studied the type
system on which we can verify semantics-preservation. In
Section IV, we have discussed the accuracy of
performance model, and guarantee of performance
improvement by obtaining the optimum solution using the
integer programming. Our project aims at assuring
security of processors of programming languages in very
scientific way. Our primary concern is on theoretical side,
but we believe that it will practically give a firm base for
the future IT infrastructure.

REFERENCES

[1] Appel, A., George, L., “Optimal Spilling for CISC

Machines with Few Registers,” Proc. PLDI’01, 2001.
[2] Bixby, R., Kennedy, K., Kremer, U., “Automatic Data

Layout Using 0-1 Integer Programming,” Proc.
PACT’94, 1994.

[3] Goodwin, D., Wilken, K., “Optimal and Near-optimal
Global Register Allocation Using 0-1 Integer
Programming,” Software Practice and Experience, vol.
26, 1996, 929-965.

[4] Hoare, T., “The Verifying Compiler: A Grand
Challenge for Computing Research,” J. ACM vol. 50,
2003, 63-69.

[5] Horimoto, K., An Optimal Register Allocation for
X86 Architecture with Consideration of Memory

Hierarchy, Master Thesis of Department of Frontier
Informatics, the University of Tokyo, 2004.

[6] Kerbyson, D.J., Alme, H.J., Hoisie, A., Pertinei, F.,
Wasserman, H.J., Gittings, M., “Predictive
Performance and Scalability Modeling of a Large-
Scale Application,” SC2001, 2001.

[7] Lacey, D., Jones, N.D., van Wyk, E., Frederiksen, C.,
“Proving Correctness of Compiler Optimizations by
Temporal Logic,” Proc. POPL’02, 2002.

[8] Lerner, S., Millstein, T., Chambers, C., “Automatically
Proving the Correctness of Compiler Optimizations,”
Proc. PLDI’03, 2003.

[9] Matsuno, Y., Sato, H., “Flow Analytic Type System
for Array Bound Checks,” ENTCS vol. 76, 2003.

[10] Matsuno, Y., Sato, H., “A Type System for
Optimization Verifying Compiler,” to appear in
PPL2004.

[11] Morriset, G., Walker, D., Crary, K., Glew, N., “From
System F to Typed Assembly Language,” ACM
Trans. Programming Lang. and Syst., vol. 21, 1999,
528-569.

[12] Necula, G., “Proof-carrying Code,” Proc. POPL’97,
1997.

[13] Necula, G., “Translation Validation for an Optimizing
Compilers,” Proc. PLDI’00, 2000.

[14] Pnueli, A., Siegel, M., Singerman, E., “Translation
Validation,” Proc. TACAS’98, LNCS 1384, 1998.

[15] Sato, H., Yoshida, T., “Unrolling Shape: Symbolic
and Quantitative Analysis of Loop Unrolling Effect,”
Proc. 6th Int’l Conf. Software Engineering and
Applications, 2002.

[16] Whaley, R., Petitet, A., Dongarra, J., “Automated
Empirical Optimizations of Software and the ATLAS
Project,” Parallel Computing, vol. 27, 2001, 3-25.

[17] Wilken, K., Liu, J., Hefferman, M., “Optimal
Instruction Scheduling Using Integer Programming,”
Proc. PLDI’00, 2000.

[18] Yoshida, T., Sato, H., “Characteristics Extraction of
Loop Unrolling and its Modeling,” Trans. IPSJ vol.
42 (SIG 7(PRO11)), 2001, 1-11. (in Japanese)

[19] Zuck, L, Pnueli, A., Fang, Y., Goldberg, B., “VOC: A
Translation Validator for Optimizing Compilers,”
ENTCS vol. 65, 2002.

