
 Page 1

MetaCompiler: A Compiler System on Grid-like
MetaComputing Environment

SATO Hiroyuki
Information Technology Center, the University of Tokyo
2-11-16, Yayoi, Bunkyo-ku, Tokyo, 113-8658, Japan.
e-mail address: schuko@cc.u-tokyo.ac.jp

Abstract:
GRID-like metacomputing environment provides a view in which a programmer can access
distributed computational resources in a transparent way. In addition to the conventional
technologies of distributed environment, a unification of local and distributed resources is
required in order to fully utilize the resources of GRID.

In this paper, we propose a compiler system META-C on a GRID-like metacomputing
system, and implement its prototype. Using this compiler, GRID environment is made
transparent, and the compiler enables a programmer to compile source programs, without re-
coding, on wide range of environments varying from local to metacomputing system. In our
system, caching and partial computation are the key technologies in META-C together with
conventional distributed technologies such as directory service.

Keywords:
Grid, Compiler, Numerical Computation, Agent System, Partial Computation, Caching

1. Introduction

Grid-like metacomputing environment provides a view in which a programmer can access
distributed computational resources in a transparent way. This requires, in addition to
conventional distributed technology, integrated access methods to local and remote resources.
Recent development of the distributed technology has enabled us to access remote resource in
a more abstract way. Abstraction of “resources” in distributed environment is a key
technology in distributed technology. One of the most useful, but a long-history-having
resource is “file.” Today, resources are generally understood as “objects,” and a number of
objects can be treated as computational “resource” in a distributed environment.

In this situation, one of major problems is how to embed the space of remote resource
names into a local environment, by which a programmer can access remote resources in the
same way as local resources. There are two major solutions: one is to give unique name to
each resource. Internet domain name and URI in Web systems are its typical examples. This
solution is an extension of name space system, and a programmer can access names in this
extended name space in almost the same way. The other solution is to map each remote
resource name to the local name space. NFS is its typical example. This solution enables a
programmer to access remote resource in the identical way to the local resource. However,
the mapping must be carefully designed to avoid conflict in the name space.

The integration of local name space and remote name space is important because it is a key
technology in providing transparency of site of resources. A programmer does not have to

 Page 2

consider the specific site or method in the access. Today, a number of directory services are
provided as the database of resource names and access methods.

This paper studies numerical libraries as computational resources in distributed
environment. Numerical libraries, together with compilers, are commonly used as a resource
of high performance computing environments. They can be an interface with high
performance computers. In other words, users can abstract a high performance computer as a
high performance numerical library machine. This has much in common with RPC, in which
remote resources are provided as procedure calls. Numerical libraries themselves have been,
and are written and maintained with enormous efforts. BLAS and LAPACK are their typical
examples. Furthermore, their performance is continuously improving. By using library calls,
a programmer can fully utilize this performance improvement.

Distributed environment means the heterogeneous cluster of high performance computers
connected via network with each other. The fact the number of high performance computers
has been rapidly increasing, together with the increasing demands of high performance
computing, makes reasonable the plan to construct Web-like network of high performance
computers. GRID is the very project that aims at this goal.

Together with the interface of numerical libraries, in our case, the computational resource
means the numerical libraries, not the computers themselves. There are at least two
successful projects, Netsolve and Ninf. They provide numerical libraries as resources, and
RPC-like interface.

Our goal is to provide a compiler by which a programmer can transparently use the remote
computers via numerical libraries. This also makes environment transparent in the meaning
that numerical programs written on a local environment can be transported to a distributed
environment. We denote this compiler system by a META-compiler. META-compiler
requires transparent handling of remote resource and embedding it into a local
(=conventional) compiler. Handling a remote resource must be adaptive because organization
of distributed environments is never fixed, but evolving. Netsolve and Ninf satisfy this
monitoring of organization of remote resources. What remains to be solved is to hide the
explicit remote procedure call. If this is solved, the program is portable in its true sense.

In this paper, we discuss the software architecture and implementation of META-compiler.
Although our current implementation heavily depends on the RPC-like interface of Netsolve,
the software architecture is independent of any specific agent system. We have improved
functions of Netsolve in the version management and the directory service. The interface with
Netsolve is taken on the linker level. As the performance-directed improvement, we added
#pragma directives.

The organization of this paper is as follows: Section 2 discusses the related work. Section 3
and 4 studies the software architecture of META-compiler, particularly directory service and
name resolution in a metacomputing environment, and caching and partial computation as
their key technologies. Section 5 summaries the implementation of META-compiler. Section
6 gives a brief summary.

2. Related Work

Individual technologies for distributed environment have a long history. Before the word of
metacomputer and GRID was coined, programming environment on heterogeneous computer
network was studied. Jade (Rinard, et al, 1992) is its typical example of programming
languages on heterogeneous environments. PVM (Geist, et al, 1994) is another system for
heterogeneous environment, which is one of goals of PVM from its outset.

 Page 3

Netsolve (Casanova, et al, 1996, 1997) and Ninf (http://www.ninf.etl.go.jp) provide a
GRID-like metacomputing environment from the numerical computation’s view. WWVM
(Dincer, et al, 1996) is another example of metacomputing environment using HTTP. Besides
metacomputing, NEOS (http://www-c.mcs.anl.gov/home/otc) collects remote resources to
solve large problems in linear programming.

Netsolve and Ninf have much in common, and have the interface by which Netsolve can
call Ninf, and vice versa (Salts, et al, 1998). However, their strategies in identifying resources
are slightly different from each other. Netsolve defines “problem” by extending functions,
while Ninf uses both function name and location in identifying resources. A location is not
necessary in identifying a problem in Netsolve, but is resolved by the agent of Netsolve.

Today, GRID (Foster and Kesselman, 1998) is a typical, and the largest project of
metacomputing environment. GLOBUS (Foster and Kesselman, 1997,
http://www.globus.org), a toolkit building distributed environments, and LEGION
(http://www.cs.virginia.edu/legion), an object-based approach, are its core distributed
technologies. NPACI (Karin, 1998) is an approach of GRID from the application’s view.

MPICH-G (Foster and Karonis, 1998) is an approach that provides transparent
metacomputing environment, and shares its objectives with our MetaCompiler. Using
MPICH-G, a programmer can run as-is programs written in MPI on GLOBUS distributed
environment.

3. Criteria of META-compiler

3.1 Criteria for Building Compiler Interface

In this section, we discuss the criteria for building META-compiler.
� There is no need for code rewriting. This is the transparency discussed in Section 1. This

requires that the META-compiler processes the identical source programs to those
targeted at conventional local environment.

� The remote resource can be accessed as a procedure call. This requirement is satisfied by
many preceding systems including RPC, Netsolve and Ninf.

The META-compiler system makes the GRID-like metacomputing system transparent for

a programmer. This means that the compiler system determines at which site a library call
must be processed, whether local, or some remote site. A programmer does not need to
consider any specific conditions of environments. This has two results: portability from the
local environment to GRID, and furthermore that between metacomputing environments. The
same program can be compiled and run both on small environments for debug and on large
metacomputing environments for production-run. We implement a META-compiler on
Netsolve, as a compiler interface on a GRID-like metacomputing environment.

3.2 Building Blocks

To satisfy the criteria stated above, we use the building blocks with the strategy listed below:
[C Compiler] We implement a META-compiler on conventional compilers. Specifically, a C
compiler together with a linker is used. The extension is implemented as a preprocessor.
[Netsolve] As an interface with the metacomputing environment, we adopted Netsolve.

 Page 4

Using those blocks, we identify the problems to be solved in this project as:

1. identification of remote resources.
2. name management of remote resources together with the design of directory service.
3. caching.
4. parameter passing in RPC.
5. performance tuning.
6. parallelism consideration.

In this paper, we mainly discuss 1, 2, and 3, the technologies that provide the environment-
transparency to META-compiler together with performance tuning.

4. Software Architecture of Meta-C

In this section, we discuss META-C, an implementation of a META-compiler.

4.1 Overview

We show the summary of META-C in Figure 1.

Figure 1. Software Architecture of MetaCompiler

 Page 5

By using META-C, we can process as-is programs on distributed environment, if they are
written using numerical libraries.

META-C is connected with GRID via Netsolve, at the link phase. Function names are
resolved in an extended name space reflecting the environment.

The interaction with the GRID is taken using the “agent” of Netsolve with a slight
improvement. For performance tuning, we have implemented directives as hints for selection
of servers of resources. Furthermore, we have made possible the selection of blocking/non-
blocking computation for parallelism implemented on Netsolve.

By default, the META-C daemon together with the improved agent automatically does the
selection by partial computation on the information on resources obtained from Netsolve, and
caches the result on a local system.

4.2 Name Resolution and Directory Service

The resources are numerical libraries under control of Netsolve. Specifically, at the phase that
the linker resolves the name of functions, numerical libraries at remote sites are also used in
the name resolution. The information necessary for linking is provided by the agent, and
listed below:

Name Parameter Type Result Type Server List

Then, the improved agent of META-C generates the interface-stub as the form of archives.
These archives are updated when the information from the agent of Netsolve is updated.

4.3 Enhancement of Directory Service

Directory service provided by Netsolve is based on abstract “problem.” A problem is an
abstraction of a library function name. In which the function is located is hidden from a
programmer. The Netsolve agent controls the information on the location associated with
function names. A client issues a query of a problem to the agent; the agent returns the list of
locations with priorities; the client stub internally selects the server, and issues RPC to the
server. What a client must do is just to explicitly select library calls that are to be processed
by Netsolve, which is just the part where the code rewriting is necessary. When invoking the
Netsolve client, the location of a server is transparent, but the invoking itself must be
explicitly written.

For META-C, there is no (explicit) Netsolve call. A program-point where a library call is
processed as a Netsolve call is automatically, or transparently determined by META-C. The
Netsolve information that the linker and archivers use must be reflected in archives. This
includes the organization of GRID and its update information. Moreover, the information of
locations of functions is also necessary in building and updating the archives that the linker
uses in transparent Netsolve calls. Furthermore, the information that the agent uses in the
selection of servers is necessary so that META-C itself can tune performance.

To fulfil these requirements, we have made the enhancement of Netsolve agent:
� functions to obtain all list of problems under the control of the agent,
� functions to obtain all list of problems updated from the last query, and
� functions to obtain the information that the agent uses in server selection.

 Page 6

4.4 Caching

As Figure 1 shows, META-C uses archives to store the information (=function names which
are remotely serviced) from the Netsolve agent. This is a kind of caching because the
information obtained in the interaction with the agent is locally stored and used. Caching is
proved to be effective when the access cost of network is high. Caching in Web systems is
one of typical examples. In the rest of this subsection, we discuss caching.

The number of library functions existing in the GRID is generally too large to be handled
by the linker of a local system. Saving all remote function names in local archives is not very
effective. Therefore, we have designed the interface in twofold: library functions managed by
the agent are used in local archives, and other function calls are issued directly to Netsolve.

The first interface in the form of archives stores the information from the agent.
Specifically, META-C
1. obtains the information from the agent on the selection of servers, and
2. partially computes the information, and selects the server, and finally
3. stores the code that directly issue RPC to the selected server.

In the server selection, the protocol of Netsolve is divided into the essentially dynamic
calls and the calculation using the information that the agent has. The latter part can be
partially computed, by which some interactions with agents can be saved. The partial
computation guarantees the same effect as the normal computation with better performance.

The caching process is the combination of partial computation and its store to the local
system.

On the other hand, the second interface is invoked when the linker tells that the function is
not in the interface archives, and directly issues the Netsolve client code. The code requests
the service to an outer Netsolve agent that manages larger problems.

4.5 Performance Tuning

Usually, given a library call, META-C determines its optimal server with the information
given by Netsolve. However, there are some cases that some hints are useful in determining
servers for performance tuning. In Meta-C, we provide the hints listed below.
[heavy] The function call costs high.
[light] The function call costs low.
[block] The function is called in the blocking way, or
[nonblock] The function is called in the non-blocking way.
[server] Specify the server.

The option “heavy” is useful as a hint in server selection. Blocking/non-blocking call is
closely related with parallel processing. These options can change the original logic of server
selection. They are provided as #pragma directives.

The current version of META-C takes only library calls as the target of computation on
remote server. However, we can extend this schema so that we can also take loops as the
target of remote computation. This brings parallelization, or a typical performance tuning,
into META-C, and the merge with OpenMP (http://www.openmp.org/specs) is possible at the
future version.

 Page 7

5. Prototype Implementation

In this section, we discuss our prototype implementation of META-C. META-C consists of
two parts: nslcc, the language processor, and makar, the daemon which interacts with the
Netsolve agent.

5.1 nslcc

nslcc preprocesses the source file in the order that it
1. extracts and interprets #pragma directives, and
2. invokes the compiler and the linker at appropriate timings.

As major compiler options, we have added -LOCAL and –GLOBAL to specify that name
resolution is done with priority given to the local or metacomputing environment,
respectively.

5.2 Outline

The outline of processes of META-C is such that
1. first it extracts and interprets #pragma directives in the source files for performance

tuning. The result is output to netsl_-prefixed files.
2. Next, it compiles the netsl_-prefixed files using cc, and finally
3. it makes linkage using libmetafunc.a.This archive saves the client stub of the numerical

library functions. Its details are described in Section 5.3.

 Figure 2 shows this outline of processing according to the software architecture discussed
in the last section.

 Page 8

Figure 2. Outline of Prototype Implementation

5.3 Resource Name Resolution Environment

We provide three environments where the function names are resolved.
[local] Names are resolved locally. In other words, the linker searches names only in local
archives.
[mc] The name space is extended to that including names provided by the Netsolve agents.
[netsolve] Names are resolved only in the name space of the Netsolve agent.

By switching environments, the same source program can be compiled in the environment
varying from the local one to GRID.

The transparency is implemented as automatic RPC to GRID (i.e., mc or netsolve)
environment. A programmer can use the same programs as those for local environment, and
the name resolution is done in the space automatically extended to metacomputing
environment.

We show in Figure 3 the algorithm of name resolution as the link strategy. Each stub in
libmetafunc.a and libextrafunc.a is described in Section 5.5 and 5.6. In the implementation,

 Page 9

the compiler options -LOCAL and -GLOBAL correspond to local environment and mc
environment respectively.

if (switch == local) {

 cc -c a.c -o netsl_a.o;
 cc netsl_a.o -lib1 ...;

// search local libraries first, and
// do not use libmetafunc.a in link phase.
} else if (switch == mc) {

cc -c a.c -o netsl_a.o; cc netsl_a.o -lmetafunc -lnetsolve -lnsl -lsocket -lib1 ...;
// search libmetafunc.a(where client stubs are stored) first.
}
if (linker reports unresolved functions) {

make libextrafunc.a;
// Analyze the error message from the linker,
// and for the unresolved names,
// generate the stub requesting name resolution directly to Netsolve agent,
// and save them to libextrafunc.a,
 cc netsl_a.o ... -lextrafunc;

// and try again the name resolution using libextrafunc.a
}

Figure 3. Name Resolution Algorithm as the Link Strategy.

5.4 A Simple Example

We show a simple example in Figure 4.

bcfe:9] cat a.c
atest(double **a,double **b, double **c)

{
#pragma NETSOLVE heavy(dmatmul)

dmatmul(a,b,c);
}
bcfe:10] nslcc -GLOBAL -c a.c b.c
bcfe:11] nm netsl_a.o
netsl_a.o:

[Index] Value Size Type Bind Other Shndx Name

[3] | 16| 60|FUNC |GLOB |0 |2 |atest
[2] | 0| 0|NOTY |GLOB |0 |UNDEF |dmatmul
[4] | 0| 0|NOTY |GLOB |0 |UNDEF |dmatmulheavyp
[1] | 0| 0|FILE |LOCL |0 |ABS |netsl_a.c
bcfe:12]

 Page 10

Figure 4. Example of Meta-C Process

In Figure 4, the generated code computes dmatmul in the metacomputing environment.
dmatmulheavyp works as a performance option for META-C.

5.5 makar

makar is a daemon that interacts with Netsolve agents. It obtains problems and related
information from the agent, makes client stubs, and makes their archives.

The outline of the processing is:
1. first, makar obtains all problem names and server names which the Netsolve agent is

managing.
2. Next, it makes a client stub for each problem. The information from the agent includes

servers of the problems, types of parameters and results. For example, in the case of
dmatmul, the stub is generated as in Figure 5.

 Page 11

typedef struct { float r; float i; } scomplex;
typedef struct { double r; double i; } dcomplex;
int dmatmulheavyp=0;
int dmatmullightp=0;
int dmatmulnbp=0;
char dmatmul_d_servers_name = {“bcfe.cc.u-tokyo.ac.jp”,“”};
unsigned int dmatmul_d_servers_addr = {2185622597, 0}
char dmatmul_f_servers_name = {“bcfe.cc.u-tokyo.ac.jp”,“”};
unsigned int dmatmul_f_servers_addr = {2185622597, 0}
char dmatmul_l_servers_name = {“bcfe.cc.u-tokyo.ac.jp”,“”};
unsigned int dmatmul_l_servers_addr = {2185622597, 0}

double **dmatmul(double p0[][],double p1[][])
{ if (ns_parallel != 0) {

int ptr = nbrqtsptr;;
nbrqts[nbrqtsptr++]=netslnb2(dmatmul_d_servers_name,

dmatmul_d_servers_addr,“dmatmul()”,p0,p1);
if (nbrqtsptr >= 256) ns_barrier();
return nbrqts[ptr];

}
if (dmatmulnbp) {
if (dmatmulheavyp)

return (double**) netslnb2(dmatmul_f_servers_name,
dmatmul_f_servers_addr,“dmatmul()”,p0,p1);}

if (dmatmullightp)
return (double **) netslnb2(dmatmul_l_servers_name,

dmatmul_l_servers_addr,“dmatmul()”, p0,p1);}
return (double **) netslnb2(dmatmul_d_servers_name,

dmatmul_d_servers_addr,“dmatmul()”,p0,p1);}
else {
if (dmatmulheavyp)

return (double **) netsl2(dmatmul_f_servers_name,
dmatmul_f_servers_addr,“dmatmul()”, p0,p1);

if (dmatmullightp)
return (double **) netsl2(dmatmul_l_servers_name,

dmatmul_l_servers_addr,“dmatmul()”, p0,p1);
return (double **) netsl2(dmatmul_d_servers_name,

dmatmul_d_servers_addr,“dmatmul()”, p0,p1);
}

Figure 5. A C Stub Program for dmatmul

It is to be noted that the name of the server on which dmatmul is to be computed is
already resolved. Therefore, the server is explicitly specified in netsl2, the RPC version of
Netsolve with server name (Figure 5, 6). This means that this dmatmul directly issues RPC
to the server.

 Page 12

Figure 6. Server Specification by Partial Computation

3. Next, makar saves stubs into the archive libmetafunc.a. In other words, this archive

represents the cache of the result of the partial computation of server-name resolution.
4. It periodically issues the request to the agent, and obtains the update information, then
5. merges the updated stuff into the archive.

In our implementation, we use a simple strategy in server selection. That is, if heavy
attribute is specified, the fastest server is selected. If light attribute is specified, the server that
has the least latency is selected. By default, we use the default logic of Netsolve.

The version management is indispensable to efficiently handle the update. Our
implementation uses a simple timestamp, which needs further improvement.

 Page 13

5.6 Dynamic Interaction with Netsolve

Names that cannot be resolved by using libmetafunc.a are dynamically resolved in outer
environment that the default Netsolve does not control. Specifically, META-C
1. lists the unresolved names from the error message from ld, and
2. for each unresolved name, it generates the corresponding stub that issues the Netsolve

request. The target of the outer Netsolve agent is specified as
NETSOLVE_MASTERAGENT, probably the agent that manages larger problem
database.

3. Next, it saves the stubs in libextrafunc.a, and tries again.

We show the example stub in Figure 7. By this resolution, we can dynamically interact
with the outer metacomputing environment.

main(p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,p14,p15,p16,p17,p18,
p19,p20)
{ char t[256],*ma;int x;

strcpy(t, getenv("NETSOLVE_AGENT"));
setenv("NETSOLVE_AGENT",ma=getenv("NETSOLVE_MASTERAGENT"));
if (!strcmp(ma,"")) return 0;
x= netsl("main",p0,p1,p2,p3,p4,p5,p6,p7,p8,p9,p10,p11,p12,p13,

p14,p15, p16,p17,p18,p19,p20);
setenv("NETSOLVE_AGENT",t); return x;}

Figure 7. A Stub that directly calls a Netsolve other than
NETSOLVE_AGENT.

We show in Figure 8 the interactions of the linker with the metacomputing environment using
libmetafunc.a and libextrafunc.a. Server specification by partial computation, its caching
(libmetafunc.a), and dynamic name resolution using outer Netsolves are the key
technologies.

 Page 14

Figure 8. Partial Computation and Caching of its Results in Name
Resolution

6. Concluding Remarks

In this paper, we have proposed a compiler system META-C on a GRID-like metacomputing
system, and have implemented its prototype. Using this compiler, GRID environment is made
transparent, and the compiler enables a programmer to compile source programs on wide
range of environments varying from local to GRID.

Software architecture of META-C has been discussed. META-C is connected with
Netsolve at the link phase. Function names are resolved in a name space extended to the
metacomputing environment. Caching and partial computation are the key technologies in
META-C together with conventional distributed technologies such as directory service.
Implementation has also been discussed according to the software architecture.

 Page 15

Acknowledgement
This work was partially supported by the Ministry of Education, Science and Culture of
Japan (Grant No. 13680397).

References

CASANOVA, H., and DONGARRA, J. (1996): Netsolve: A network server for solving
computational science problems, Supercomputing 96.
CASANOVA, H., DONGARRA, J. and SEYMOUR K. (1997): Client User’s Guide to
NetSolve, draft.
DINCER, K. and FOX, G.C. (1996): Building a World-Wide Virtual Machine Based on Web
and HPCC Technologies, Supercomputing 96.
FOSTER, I., and KARONIS, N. (1998): A Grid-Enabled MPI: Message Passing in
Heterogeneous Distributed Computing Systems, Supercomputing 98.
FOSTER, I., and KESSELMAN, C. (1997): Globus: A metacomputing infrastructure toolkit,
J. Supercomput. Appl., 11(2), 115--128.
FOSTER, I., and KESSELMAN, C. Eds. (1998): The Grid. Blueprint for a new Computing
Infrastructure.
GEIST, A., BEGUELIN, A., DONGARRA J., JIANG, W., MANCHECK, R., and
SUNDERAM, V. (1994): PVM: Parallel Virtual Machine.
KARIN, S., and GRAHAM, S. Eds. (1998): The High Performance Computing Continuum,
Comm. ACM, 41(11), 32--75.
RINARD, M.C., SCALES, D.J. and LAM, M.S. (1992): Jade: a high-level, machine-
independent language for parallel programming, Supercomputing 92, 245--256.
SALTS, J., SUSSMAN, A., GRAHAM, S., DEMMEL, J., BADEN, S., and DONGARRA,
J. (1998): Programming Tools and Environments, (Karin, et al, 1998), 64--73.

