本稿はIPSJ第10回量子ソフトウェア研究発表会 原稿の訂正版です。引用文献が正しく参照され ていない問題を修正しています。 IPSJに収録されている原稿ではなくこの原稿を 優先してご参照ください

決定グラフ型量子シミュレータの性能評価

木村 悠介^{1,a)} 李 少文^{2,b)} 佐藤 周行^{2,c)} 藤田 昌宏^{2,d)}

概要:量子コンピュータ向けアルゴリズムの開発のためには、高速で多量子ビットを扱うことが出来る量 子シミュレータが重要である。しかし一般的な状態ベクトル型シミュレータでは N 量子ビットに対して 2^N の長さのベクトルを保存する必要があり、手元のコンピュータでシミュレーションするには 30 量子 ビット程度が限界である。この問題を解決する手法の1つとして決定グラフがある。決定グラフは状態ベ クトルをグラフの形で保存するので、状態ベクトルに規則性があれば使用メモリ量を大幅に削減できる可 能性がある。本稿では、決定グラフ型シミュレータを独自に実装し様々なアルゴリズムで実験を行い、状 態ベクトル型シミュレータとの比較を行った。Grover や Shor などのアルゴリズムでは大幅な高速化と多 量子ビット化が見られた一方、パラメータ付き回転ゲートを多く含むようなランダム回路では遅くなるこ とが示された。

Evaluation of Decision Diagram Based Quantum Simulator

YUSUKE KIMURA^{1,a)} LI SHAOWEN^{2,b)} SATO HIROYUKI^{2,c)} MASAHIRO FUJITA^{2,d)}

Abstract: In order to efficiently develop algorithms for quantum computers, a quantum simulator capable of handling a large number of qubits at high speed is essential. However, a state vector based simulator needs to store a vector of length 2^N for N qubits. In today's typical PC environment at hand, it is evaluated that at most 30 qubits can be handled. A decision diagram-based simulator is expected to solve the problem of memory size. Decision diagram stores state vectors in the form of graphs, which has a possibility to significantly reduce memory usage if there are regularities in the state vector. In this paper, we have implemented our original decision diagram based quantum simulator, and conducted experiments with various algorithms to compare with the state vector based simulator. Algorithms such as Grover and Shor show significant speedup and superiority of performance for larger numbers of qubits, while random circuits with many parameterized rotation gates show slower performance.

1. はじめに

量子コンピュータでは近年目覚ましい開発の進展が見 られる。Google は 53 量子ビットを搭載した超伝導型量子 チップを開発しており、その量子コンピュータを用いて量 子超越性を達成したと主張した [1]。IBM は 433 量子ビッ トを搭載した量子コンピュータを開発し [2]、様々な量子

1 富士通株式会社

Fujitsu Limited

- ² 東京大学
- The University of Tokyo
- ^{a)} yusuke-kimura@fujitsu.com
- ^{b)} li-shaowen879@satolab.itc.u-tokyo.ac.jp
- c) schuko@satolab.itc.u-tokyo.ac.jp

 $^{\rm d)}~$ fujita@ee.t.u-tokyo.ac.jp

アルゴリズムの研究開発に役立てている。しかし、このよ うな大規模な量子コンピュータにアクセスできる研究者は 限られており、利用のためのコストも高額である。また現 行の量子コンピュータはノイズの影響を受けやすく、アル ゴリズム開発に用いにくいという問題点もある。したがっ て、量子コンピュータを模倣することの出来る量子シミュ レータを研究開発することは、量子エラー訂正や量子アル ゴリズムの開発にあたって非常に重要である。

最も一般的な量子シミュレータは状態ベクトル型である。 N 量子ビットの量子状態は 2^N の長さの複素ベクトルで表 現することが出来るが、そのまま 2^N 個の複素数分のメモ リを確保してシミュレーションを行うのが状態ベクトル型 である。IBM の Qiskit Aer[3] や Qulacs[4] などが有名であ **IPSJ SIG Technical Report**

る。行列ベクトル演算を高速に行うために GPU を活用す る事もできる [5]。いずれの場合でも、Double 型を用いて 複素数を表現する場合、30 量子ビットの状態ベクトルを保 持するには 16GB が必要である。従って手元のコンピュー タを用いてシミュレーションするインタラクティブな開発 環境では 30 量子ビット程度が限界である。MPI 通信を用 いて複数ノードにまたがるメモリ空間をまとめて活用す ることも可能であり、[6] では 36 量子ビットのシミュレー ションが行われている。しかし必要なメモリ量は量子ビッ ト数に対して指数的に増加するため、スーパーコンピュー タを用いたとして高々 40 量子ビット程度が限度である。

メモリが不足する問題を解決するために、いくつかの手 法が提案されている。テンソルネットワーク型は、状態ベ クトルを MPS(Matrix Product State, 行列積状態)[7] とし て保持し、量子回路をテンソルネットワークに見立てて シミュレーションを行う手法 [8] である。必要なメモリ量 を削減できる可能性があるが、エンタングルが多い量子 状態や深い回路では逆に動作が遅くなるという欠点があ る。特に量子機械学習で活用されている [9], [10]。別の手 法として決定グラフ型がある。決定グラフは論理関数を表 現するためのデータ構造として古くから用いられてきた が[11], [12]、量子状態(ベクトル)や量子回路(行列)を保 存するために利用することも可能である [13]。詳細は後述 するが、グラフ構造を用いることで、部分ベクトルに共通部 分があったり、0以外の値が少ない場合(スパースな場合) に使用メモリ量を削減することが出来る。しかし表現すべ きベクトルや行列の値がランダムの場合、良いパフォーマ ンスが得られない可能性が高い。実装として DDSIM[14] や SliQSim[15] が有名である。また筆者らはマルチスレッ ド化に対応した決定グラフ型量子シミュレータ [16] を開発 している。

本研究では決定グラフ型に着目し、その性能を調査する ことを目的とする。既存研究 [13], [14], [15], [16] でも実験 結果は報告されているが、決定グラフ型が高速に動作する アルゴリズムに偏っている場合が多く、広範なアルゴリ ズムについて調査してその特性を明らかにしたものがな かった。本研究の主な貢献は、QCBM (ランダム回路)[4], QASM Bench[17], VQE[18], Shor[19], Grover[20] などの 様々な種類のアルゴリズムを用いて決定グラフ型と状態ベ クトル型の実行時間を明らかにし、特性の違いを明らかに した点である。このような違いを理解することで、種々の シミュレータを組合せて利用し、アルゴリズム開発をより 効率的に行うことが出来るようになる。

本稿の構成は以下の通りである。2節で決定グラフ型シ ミュレータの仕組みを説明する。3節では、実験環境につ いて説明した上で、ベンチマークごとの実験結果を紹介す る。各ベンチマーク回路の特徴についても概説するが、詳 細は参考文献を当たられたい。4節で本稿をまとめ、今後

図1 決定グラフによる状態ベクトル表現

の展望を述べる。また詳細な実験結果は付録にも添付した。

2. 決定グラフ型量子シミュレータ

本節では量子状態や量子ゲートを表現するための決定グ ラフについて説明する。既存研究で利用されている決定グ ラフにはいくつかの種類があるが、本研究では DDSIM[14] などが採用している QMDD[13] を用いることにした。従っ てこの手法について説明する。なお、本稿ではどのように して行列・ベクトルを決定グラフで表現するかに絞って説 明することとし、決定グラフが省メモリになりやすい理由 を理解することを目的とする。紙面の都合上行列ベクト ル積や測定は取り扱わないため、参考文献を参照された い [11], [12], [13], [14], [15], [16]。

2.1 量子状態(ベクトル)の表現方法

N量子ビットの状態ベクトルは 2^Nの長さの複素ベクト ルで表現できる。例として図 1 の左側にあるようなベク トルを考えよう。このベクトルは、右側に示された決定グ ラフでも表現することが出来る。決定グラフからベクトル の各要素の値を知るためには、インデックスの値に応じ てエッジを辿り、エッジ重みの積を計算すれば良い。0 は 左に、1 は右に進むこととし、値のないエッジ重みは1 と する。たとえばインデックスが 101 の値を知りたい場合、 右・左・右の順に上からエッジをたどる。その際エッジの 重みは順に (1,-1,0.5,1) であるから、積は -0.5 となる。 インデックスが 110 の場合、途中で 0 のエッジ重みが登場 するため、積は 0 となる。

元のベクトルには8つの複素数が含まれているが、決定 グラフには4つのノードしか含まれていない点に着目され たい。このようにして、共有するノードがある決定グラフ ではメモリを削減することができ、アルゴリズムによって は大幅な省メモリ化が期待できる。また、値として0が多 い場合もノード数を削減できる。

ランダムなベクトルを表現する場合、共有するノードが 一切作成できず2分木となる場合がある。この場合、量子 ビット数に対してノード数が指数的に増えることになる

図2 決定グラフによる量子ゲート表現

図3 決定グラフの例

ため、決定グラフを利用するメリットは失われる。複雑な データ構造を用いている分、状態ベクトル型よりもより多 くのメモリを必要とし、処理も遅くなることが予想される。

2.2 量子ゲート(行列)の表現方法

N量子ビットに作用する量子ゲートは 2^Nの大きさの正 方行列で表現できる。ベクトルを表現する際には 2 分割す るために二分グラフを用いたが、正方行列の場合には 4 分 割するため 1 つのノードが 4 つの子ノードへのエッジを持 つ。いくつかの量子ゲートの例を図 2 に示す。

2つの1量子ゲートから2量子ゲート分のユニタリ行列 を得るには、状態ベクトル型の場合にはクロネッカー積を 計算する。決定グラフの場合には、2つの決定グラフを単純 に結合することで実現できる。CX ゲートのような2つの 量子ビットをエンタングルさせるようなゲートの場合、そ の限りではない。ベクトルと同様に、行列の場合でもノー ドが共有される場合がある。従って、量子ゲートを決定グ ラフで表現する場合も、メモリ削減効果が期待できる。

状態ベクトル型のメモリ削減効果を分かりやすく説明す るため、図3の量子回路を考える。10量子ビットの回路 で、1ビットにだけアダマールゲートを作用させるもので ある。状態ベクトル型では2¹⁰ = 1024 個の複素数を保存 する必要があるが、決定グラフの場合には10 個のノード を保持するだけで良い。以上のように、決定グラフを用い ることで必要メモリ量が大幅に削減されることがある。

表1	実験に用いたベンチマークー	一覧
Name	Explanation	Code source
QCBM	Random circuits	$[4]^{*1}$
QASM Bench	Various circuits	[17]
VQE[18]	Solving maxcut problem	$[21]^{*2}$
Shor[19]	Prime factorization	[22]
Grover[20]	Search algorithm	$[14]^{*3}$

3. 実験

3.1 実装·実験環境

本研究では QMDD[13] を採用した決定グラフ型量子シ ミュレータを開発した。実装に当たっては DDSIM[14] を 参考にしたが、今後のマルチスレッド化を考慮してノード を保存するテーブルの実装等は独自に行なった。シミュ レーション実行部分は 3000 行程度の C++言語で実装さ れている。また実験しやすさのために Qiskit Backend と して動作するようになっており、その部分は 500 行程度の Python 言語で実装されている。筆者らの既存研究 [16] で はマルチスレッド化した実験結果を紹介している。しかし マルチスレッド版は Qiskit backend への対応等が不十分で あるため、本研究ではシングルスレッドでの実験結果を紹 介する。

実験に用いた計算環境は以下の通りである。実験はすべ てシングルスレッド実行である点には注意されたい。

- OS: Ubuntu 22.04 (Kernel 6.2.0)
- Software: GCC 11.4.0, Python 3.8.16
- CPU: AMD Ryzen 0 7950X (シングルスレッド実行)
- RAM: 128GB

実験に用いたベンチマークは表1にある5種類である。 実験の際には実行時間制限を設定しており、約10分である。

実験に用いたシミュレータは表 2 の通りである。State Vector 型のシミュレータにはマルチスレッド・マルチノー ド・GPU などで実行する機能があるが、すべて無効化し てシングルスレッド・シングルノードで実行した。なお DDSIM と Qulacs は 3.2 節の QCBM 実験にだけ用い、以 降の実験は我々の実装と Qiskit Aer に限定した。これは Decision Diagram 型と State Vector 型では実行時間等に 大きな違いが期待できないことや実験時間を考慮してのこ とである。

以降の実験結果では「ノード数 (nNodes)」を記載する場 合がある。これは、実験の最後に得られる量子状態を表す 決定グラフに含まれるノードの数である。

^{*1} https://github.com/qulacs/benchmark-qulacs

^{*2} https://github.com/cda-tum/mqt-bench/blob/v1.0.4/ src/mqt/bench/benchmarks/vqe.py

^{*3} https://github.com/cda-tum/mqt-ddsim/blob/v1.19.0/ src/GroverSimulator.cpp

表 2 実験に用いた量子シミュレータ一覧

図 4 QCBM (繰り返し部分、3 量子ビットの場合)

3.2 QCBM

QCBM は Qulacs[4] の評価で用いられているランダム回 路である。図4で示されるランダムなパラメータを持った RX, RZ ゲートと CX ゲートで構成されるサブ回路が 8回 繰り返される構造となっている。最終的に得られる状態べ クトルの値の中身はランダムになっていた。また、決定グ ラフ型の場合には一切ノードを共有しない木構造となって おり、N 量子ビットに対して 2^N 個のノードを持った形に なった。

4つのシミュレータの実行時間を比較するグラフを図5 に示す。なお詳細な実験結果は付録の表 A-1 も参照された い。すべてのシミュレータが、おおよそ直線を描いている。 これは、Qubit 数が1増えるごとに状態ベクトルの大きさ は2倍になるため、計算すべき量が指数的に増えるからで ある。また、決定グラフ型は状態ベクトル型と比較して同 じ量子ビット数に対して 100 倍以上程度遅いこともわかっ た。ランダムな状態ベクトルの場合、共有されたノードを 作ることができないため、計算時間が短縮できない。複雑 なデータ構造を採用している決定グラフが不利になってお り、量子ビット数が増えるに連れて決定グラフ型との実行 時間の差が開いている。

3.3 QASMBench

QASM Bench[17] には、様々なアルゴリズムから生成さ れた量子回路が含まれており OpenQASM2.0 形式 [23] で 保存されている。回路は量子ビット数に応じて small (43 個), medium (24 個), large (57 個) の 3 つに分けられてい る。本実験では small, medium のすべてと large5 個を用 いて Qiskit Aer と我々の実装の比較を行った。large には 最大 433 量子ビットの量子回路が含まれており、それらを 状態ベクトル型でシミュレーションすることはメモリ使用 量の観点から不可能である。従って今回は、large からは 33 量子ビット以下の5個だけを利用することにした。実行

図 5 QCBM 実験結果 (sec, log10 スケール)

時間制限として 1000 秒を設定した。

実験結果として、Qiskit Aer の実行時間と我々の実装の 実行時間を散布図にしたものを図6に示す。なお詳細な実 験結果は付録の表 A-2 も参照されたい。実行時間 1000 秒 を超えたものは、上辺・右辺に張り付く形で描画した。点 線上にプロットされた回路は、Qiskit Aer と我々の実装で 実行時間が変わらないものである。点線より左側にプロッ トされた回路は Qiskit Aer の方が高速な回路であり、右側 にプロットされた回路は我々の実装のほうが高速なもので ある。

Qiskit Aer が高速な方の回路には、DNN, VQE が多く含 まれた。一方で我々の実装が高速な方には、QFT, IQFT, ADD, Multiplier などが含まれた。これらの回路を目視で 確認すると、DNN や VQE にはたくさんのパラメータ付き 回転ゲート (RX,RY,RZ 等) が含まれており、一方にはほ とんど含まれていなかったことがわかった。QFT にはパ ラメータ付き回転ゲートも含まれるが、回転角のバリエー ションは少ないため VQE 等と比較するとノード数は多く なりにくい。以上より、ランダムなパラメータを与えられ た回転ゲートがたくさんある場合、決定グラフが複雑に なって実行時間が長くなることが示唆された。

3.4 VQE

VQE (Variational Quantum Eigensolver)[18] は古典コ ンピュータと量子コンピュータの実行を繰り返しながら回 路中の Ansatz の適切なパラメータを求めるアルゴリズム である。具体的には、量子回路を作用させて得られた量子 状態を古典コンピュータ上の最適化器によって評価し、よ り良い量子回路内のパラメータを得ることが繰り返され る。無制限に量子状態を探索するのは不可能であるから、 予め Ansatz と呼ばれる回路を与えておき、その中にある パラメータを調整することで所望の量子状態が得られるよ うになっている。

Ansatz には様々なものが提案されているが [24], [25]、一 般的に多数の RX, RY, RZ ゲートが含まれており、それら

図 6 QASM Bench 実験結果の散布図 (sec, log10 スケール)

のパラメータが調整すべきものである。Ansatz を含む量 子回路は複雑な量子状態を作りやすいと予想され、決定グ ラフ型が遅くなるアルゴリズムのはずである。

この実験では、決定グラフ型シミュレータ DDSIM[14] の 研究チームが公開しているベンチマークプログラム [21] に 含まれる最大カット問題を用いた。このプログラムは、ラ ンダムなグラフから Maxcut 問題を生成して VQE 問題に 変換することが出来る。最適化器には SLSQP を、Ansatz には RealAmplitude を用いた。なお、Qiskit Aer は Aer-PauliExpectation 命令に対応しており、高速に VQE を行 えるようになっている。しかし我々の実装はこれには対応 しないため、AerPauliExpectation は用いずに状態ベクト ルを最適化器の入力とする設定を行った。

実験結果を表3に記す。Qiskit Aer がメモリ使用量に関 する警告を発生させるため、15量子ビット以上の実験は 行わなかった。nNodes は、最終的な量子状態を表現する ために必要な決定グラフのノード数である。nIterations は 量子回路が評価された回数である。実行時間は Aer のほう が 30-40%ほど高速であることが分かった。今回の問題は ゲート数が少ないため決定グラフのノード数が高々2万程 度となったが、量子ビット数や Ansatz によってはノード 数がより大きくなる可能性がある点には注意したい。

3.5 Shor

Shor のアルゴリズム [19] は因数分解を行うためのもの である。たとえば 253 は 23 × 11 に分解することができる。

本実験で用いる Shor アルゴリズムのための量子回路は、 4n+2の量子ビット数を必要とする。ここでn は因数分解 したい数のビット長である。たとえば 15(2 進数:1111) を因 数分解する場合、n = 4 であるから必要な量子ビット数は 18 である。なお既存研究では、アルゴリズムの終盤で登場

nQubits	nGates	nNodes (Ours)	nIterations	Aer	Ours
4	18	15	131	0.23	0.09
5	23	31	177	0.16	0.14
6	28	32	324	0.34	0.33
7	33	124	353	0.41	0.69
8	38	254	629	0.54	2.13
9	43	214	590	0.84	3.86
10	10	48	715	1.16	12.38
11	53	1929	786	7.62	40.47
12	58	4077	709	28.21	78.94
13	63	6525	847	117.75	190.48
14	68	16383	1083	504.69	759.90

表 3 VOE 宝輪結果 (sec)

表 4 Shor 実験結果	(sec)
---------------	-------

Ν	а	nQubits	nGates	nNodes	Aer	Ours
15	2	18	12600	31	1.360	0.110
21	2	22	25330	3350	57.875	0.653
33	5	26	44466	21530	2107.088	4.017
123	2	30	118342	161735	OoM	26.556
253	2	34	204637	3620822	OoM	1197.188
511	3	38	400123	1569830	OoM	818.831

する QFT 回路の量子ビットを節約するなどし、2n+3[26] や 2n+2[27] にすることが提案されている。これらのアル ゴリズムは理想的な量子シミュレータ上では正しく動作す るはずだが、本研究ではコードの入手のしやすさの観点か ら 4n+2の量子ビット数を必要とするアルゴリズムを用 いた。

主要な数の実験結果を表4に記す。なお、詳細な実験結 果は付録の表 A·3 も確認されたい。a は Shor アルゴリズ ムに与えられる入力で、Nと互いに素な整数になるように なっている。本実験では適切と考えられる a を自動で計算 して与えている。nNodes は、最終的な量子状態を表現す るために必要な決定グラフ内のノード数である。実験では ノード数が数百万で非常に多いが、それでも我々の実装は 253 や 511 の因数分解を 10-20 分程度で終了することがで きた。一方で Aer の場合は 18,22,26 量子ビットでも実行 時間が非常に長く、30 量子ビットを超えた時点でメモリ不 足で終了してしまった。以上のように、Shor アルゴリズム は決定グラフ型が高速に処理できるアルゴリズムの1つで あることが確認できた。

追加して、ノード数と実行時間の関係をプロットした散 布図を図7に示す。同じアルゴリズムの場合、決定グラフ 型では最終的なノード数が実行時間に比例していることを 示唆する結果となっている。ゲート数ではなくノード数と 実行時間に相関がある点は興味深い。しかし、最終的に必 要なノード数は実行してみるまで分からないため、決定グ ラフ型シミュレータの実行時間を予測するとは難しいと考 情報処理学会研究報告

IPSJ SIG Technical Report

えられる。

3.6 Grover

Grover のアルゴリズム [20] は、オラクルを満たす量子状 態を見つけ出すためのアルゴリズムである。アルゴリズム の概略を図 8 に記す。図中でオラクルに当たる部分は U_ω である。このアルゴリズムの特徴は、同じ回路を量子状態 に何度も作用させることで、徐々に目的となる状態の振幅 だけを増幅させていくことである。VQE アルゴリズムと 違い、繰り返し作用させられる回路にはパラメータがない。 従って繰り返し部分を1つのユニタリゲートとしてまとめ ておくことができれば、シミュレーションを高速化するこ とが出来る。

ユニタリ行列の場合、N量子ビットに対して 2^{2N} 個の複 素数分を記憶する必要がある。状態ベクトル型の場合、10 量子ビット程度でも莫大なメモリを消費することになり、 事前に1つのユニタリ行列に回路をまとめることは困難で ある。一方決定グラフ型の場合、省メモリで保存できる可 能性がある。従って本研究では、回路を左から右に順に実 行する手法の他に、事前に繰り返し部分を1つにまとめて おく手法の実行時間についても調査することとした。なお、 Oracle は単一のランダムな量子状態とし、長さ N ビット のオラクルに対する Grover アルゴリズムの量子ビット数 は N+1 となった。この実験設定は [14] を参考にしたもの である。

実験結果を図9に示す。また、詳細な実行時間等は付録 の表 A・4 も参照されたい。橙色線 (Aer, qasm) が Aer の実 行時間であり、灰色線 (Ours, qasm) が我々の実装の実行 時間である。さらに、繰り返し部分を事前にまとめた場合 の実験結果は青色線 (Ours, Unitary) で示した。実行時間 制限を 1000 秒程度としたところ、Aer は 23 量子ビットま で実験することができた。我々の実装の場合、Aer と同様 のアルゴリズムならば 29 量子ビット、回路をまとめた場 合には 44 量子ビットまで実行することができた。以上の ように、Grover アルゴリズムは Shor アルゴリズムと同様 に決定グラフ型が高速に動作するアルゴリズムであること が分かった。ただし、オラクルにパラメータ付き回転ゲー トが含まれる場合には遅くなる可能性があり、注意が必要 である。

4. 結論と今後の課題

4.1 結論

本研究では決定グラフ型量子シミュレータに着目し、そ の性能を調査することを目的として様々な実験を行った。 3.2節のランダム回路の実験結果より、たくさんのパラメー た付回転ゲートを持つようなランダム回路に適用した場 合、決定グラフ型の実行時間は状態ベクトル型と比較して 100倍以上遅くなることが分かった。これはサブグラフの 共有が出来ずノード数が膨大となってしまうためである。

VQE 実験では、我々の決定グラフ型シミュレータは Qiskit Aer よりも 3,4 割程度低速であることが示された。 ただし用いた例題はゲート数が数十程度と少なかったた め、より複雑な Ansatz を適用した場合には Qiskit Aer と 比較してより低速になる可能性がある。

一方で Shor や Grover は 40 量子ビット超でも高速に計 算が終わることが判明した。Qiskit Aer は高々 30 量子ビッ ト程度しか扱えないので、決定グラフ型が特に有用なアル ゴリズムと言える。また、計算時間はゲート数に比例する わけではなく、状態ベクトルが含むノード数におよそ比例 することも示された。 IPSJ SIG Technical Report

以上のように、決定グラフ型や状態ベクトル型量子シ ミュレータの利用には、前段までで明らかにした特性を理 解して適用することが必要である。

4.2 今後の課題

本稿で紹介した実験結果は、すべてシングルスレッド・ シングルノード環境で行われたものである。しかし、状態 ベクトル型にはマルチスレッド化・マルチノード化が施さ れたものが多く、高速化の恩恵を受けることが出来る。筆 者らは [16] で決定グラフ型量子シミュレータのマルチス レッド化手法を提案しているが、マルチノード化も検討中 である。これらの技術を適用した上で、状態ベクトル型と の実行時間の比較も行いたい。

実験で用いた VQE はグラフの Maxcut 問題であった。 VQE は量子化学計算にも多用されているから、それらに 対しても適用したい。また、決定グラフ型シミュレータで VQE 計算を高速化するための手法についても検討したい。

参考文献

- Arute, F., Arya, K., Babbush, R. et al.: Quantum supremacy using a programmable superconducting processor, *Nature*, Vol. 574, No. 7779, pp. 505–510 (online), DOI: 10.1038/s41586-019-1666-5 (2019).
- [2] IBM: The IBM Quantum Development Roadmap, https://www.ibm.com/quantum/roadmap (2022).
- [3] contributors, Q.: Qiskit: An Open-source Framework for Quantum Computing (2023).
- [4] Suzuki, Y., Kawase, Y., Masumura, Y. et al.: Qulacs: a fast and versatile quantum circuit simulator for research purpose, *Quantum*, Vol. 5, p. 559 (online), DOI: 10.22331/q-2021-10-06-559 (2021).
- [5] Bayraktar, H., Charara, A., Clark, D. et al.: cuQuantum SDK: A High-Performance Library for Accelerating Quantum Science (2023).
- [6] Imamura, S., Yamazaki, M., Honda, T. et al.: mpiQulacs: A Distributed Quantum Computer Simulator for A64FX-based Cluster Systems (2022).
- [7] Vidal, G.: Efficient Classical Simulation of Slightly Entangled Quantum Computations, *Physical Review Letters*, Vol. 91, No. 14 (online), DOI: 10.1103/physrevlett.91.147902 (2003).
- [8] Orús, R.: A practical introduction to tensor networks: Matrix product states and projected entangled pair states, Annals of Physics, Vol. 349, pp. 117–158 (online), DOI: https://doi.org/10.1016/j.aop.2014.06.013 (2014).
- [9] McClean, J. R., Boixo, S., Smelyanskiy, V. N. et al.: Barren plateaus in quantum neural network training landscapes, *Nature Communications*, Vol. 9, No. 1, p. 4812 (online), DOI: 10.1038/s41467-018-07090-4 (2018).
- [10] Huggins, W., Patil, P., Mitchell, B. et al.: Towards quantum machine learning with tensor networks, *Quantum Science and Technology*, Vol. 4, No. 2, p. 024001 (online), DOI: 10.1088/2058-9565/aaea94 (2019).
- [11] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation, *IEEE Trans. Comput.*, Vol. 35, No. 8, p. 677–691 (online), DOI: 10.1109/TC.1986.1676819 (1986).
- [12] Fujita, M., McGeer, P. C. and Yang, J. C.-Y.: Multi-

Terminal Binary Decision Diagrams: An Efficient Data Structure for Matrix Representation, *Formal Methods in System Design*, Vol. 10, No. 2, pp. 149–169 (online), DOI: 10.1023/A:1008647823331 (1997).

- [13] Miller, D. and Thornton, M.: QMDD: A Decision Diagram Structure for Reversible and Quantum Circuits, 36th International Symposium on Multiple-Valued Logic (ISMVL'06), pp. 30–30 (online), DOI: 10.1109/ISMVL.2006.35 (2006).
- [14] Zulehner, A. and Wille, R.: Advanced Simulation of Quantum Computations, *IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems*, Vol. 38, No. 5, pp. 848–859 (online), DOI: 10.1109/TCAD.2018.2834427 (2019).
- [15] Tsai, Y.-H., Jiang, J.-H. R. and Jhang, C.-S.: Bit-Slicing the Hilbert Space: Scaling Up Accurate Quantum Circuit Simulation, 2021 58th ACM/IEEE Design Automation Conference (DAC), pp. 439–444 (online), DOI: 10.1109/DAC18074.2021.9586191 (2021).
- [16] Li, S., Kimura, Y., Sato, H., Yu, J. and Fujita, M.: Parallelizing quantum simulation with decision diagrams, 2023 IEEE International Conference on Quantum Software (QSW), pp. 149–154 (online), DOI: 10.1109/QSW59989.2023.00026 (2023).
- [17] Li, A., Stein, S., Krishnamoorthy, S. and Ang, J.: QASMBench: A Low-Level Quantum Benchmark Suite for NISQ Evaluation and Simulation, *ACM Transactions* on Quantum Computing, Vol. 4, No. 2 (online), DOI: 10.1145/3550488 (2023).
- [18] Peruzzo, A., McClean, J., Shadbolt, P. et al.: A variational eigenvalue solver on a photonic quantum processor, *Nature Communications*, Vol. 5, No. 1, p. 4213 (online), DOI: 10.1038/ncomms5213 (2014).
- [19] Shor, P.: Algorithms for quantum computation: discrete logarithms and factoring, *Proceedings 35th Annual Symposium on Foundations of Computer Science*, pp. 124– 134 (online), DOI: 10.1109/SFCS.1994.365700 (1994).
- [20] Grover, L. K.: A Fast Quantum Mechanical Algorithm for Database Search, *Proceedings of the 89th Annual ACM Symposium on Theory of Computing*, STOC '96, Association for Computing Machinery, p. 212–219 (online), DOI: 10.1145/237814.237866 (1996).
- Quetschlich, N., Burgholzer, L. and Wille, [21]R.: MQT Bench: Benchmarking Software and Design Automation Tools for Quantum Com-Quantum, (online), puting. available from $\langle https://www.cda.cit.tum.de/mqtbench/ \rangle$ (2023).
- [22] Yamaguchi, J., Yamazaki, M., Tabuchi, A. et al.: Estimation of Shor's Circuit for 2048-bit Integers based on Quantum Simulator, Cryptology ePrint Archive, Paper 2023/092 (2023).
- [23] Cross, A. W., Bishop, L. S., Smolin, J. A. and Gambetta, J. M.: Open Quantum Assembly Language (2017).
- [24] Peruzzo, A., McClean, J., Shadbolt, P. et al.: A variational eigenvalue solver on a photonic quantum processor, *Nature Communications*, Vol. 5, No. 1, p. 4213 (online), DOI: 10.1038/ncomms5213 (2014).
- [25] Kandala, A., Mezzacapo, A., Temme, K. et al.: Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets, *Nature*, Vol. 549, No. 7671, pp. 242–246 (online), DOI: 10.1038/nature23879 (2017).
- [26] Beauregard, S.: Circuit for Shor's Algorithm Using 2n+3 Qubits, Quantum Info. Comput., Vol. 3, No. 2, p. 175–185 (2003).

IPSJ SIG Technical Report

[27] Takahashi, Y. and Kunihiro, N.: A Quantum Circuit for Shor's Factoring Algorithm Using 2n + 2 Qubits, *Quan*tum Info. Comput., Vol. 6, No. 2, p. 184–192 (2006).

付 録

表 A·1 QCBM 実験結果 (sec)

nQubits	Qiskit Aer	Qulacs	DDSIM	Ours
4	0.001	0.000	0.011	0.001
5	0.001	0.000	0.013	0.001
6	0.001	0.000	0.016	0.003
7	0.002	0.000	0.019	0.006
8	0.002	0.000	0.027	0.013
9	0.002	0.000	0.039	0.027
10	0.003	0.000	0.073	0.058
11	0.003	0.001	0.140	0.125
12	0.004	0.002	0.291	0.288
13	0.007	0.004	0.642	0.698
14	0.011	0.008	1.544	2.337
15	0.020	0.016	3.620	5.926
16	0.040	0.035	11.731	12.622
17	0.082	0.074	53.745	29.036
18	0.169	0.156	330.002	66.702
19	0.354	0.329		149.665
20	0.742	0.694		412.654
21	1.680	1.531		
22	3.971	3.488		
23	8.514	7.410		
24	17.649	15.751		
25	43.828	35.273		

表 A·2 QASM Bench 実験結果 (紙面の都合上 4 量子ビット以下の実験は掲載しない, sec)

Name	nQubits	nGates	nNodes (Ours)	Aer	Ours
pea5	5	96	5	0.002	0.003
qec5	5	27	8	0.002	0.003
lpn5	5	12	8	0.003	0.003
qec5	5	14	5	0.033	0.027
ec3	5	118	13	0.003	0.004
shor5	5	29	8	0.033	0.062
simon6	6	24	12	0.002	0.004
uccsd6	6	1505	33	0.007	0.020
qaoa6	6	152	63	0.003	0.008
hhl7	7	489	127	0.005	0.017
sat7	7	29	9	0.001	0.002
vqe8	8	7175	129	0.031	0.216
dnn8	8	528	255	0.005	0.040
bb8	8	27	8	0.052	0.067
qpe9	9	98	66	0.004	0.006
ising10	10	245	1023	0.004	0.064
hhl10	10	138259	1023	0.740	108.805
add10	10	35	10	0.002	0.003
sat11	11	76	25	0.003	0.004
seca11	11	72	11	0.110	0.198
cc12	12	61	12	0.034	0.177
gcm13	13	1852	57	0.022	0.072
mult13	13	21	13	0.002	0.003
bv14	14	55	14	0.005	0.007
hhl14	14	3726509		42.781	ТО
qf15	15	251	1028	0.005	0.047
fac15	15	660575		15.708	ТО
mult15	15	73	15	0.007	0.003
qec17	17	61	29	0.004	0.006
sq18	18	481	18	0.043	3.668
add18	18	67	18	0.032	0.006
qft18	18	802	18	0.057	0.014
bv19	19	75	19	0.041	0.009
qram20	20	45	20	0.056	0.004
bwt21	21	112833		ТО	ТО
cat22	22	45	43	0.020	0.011
ghz23	23	47	45	0.025	0.011
vqe24	24	2306100		ТО	ТО
knn25	25	40		3.438	ТО
swp25	25	40		3.433	ТО
ising26	26	152	22756	7.153	12.615
wstat27	27	133	53	37.189	0.014
add28	28	117	28	66.401	0.014
qft29	29	2089	29	276.569	0.033
bv30	30	108	30	217.365	0.014
cc32	32	161	32	0.122	1.240
dnn33	33	344		0.088	ТО

N a nQubits nGates nNodes (Ours) Ours 15 2 18 12600 31 0.111 21 22 25330 3350 0.654 33 5 26 44466 21530 4.0172 35 2 26 55392 24223 6.874 51 2 26 61946 24223 6.874 55 2 26 61904 40282 8.848 57 5 26 51365 37908 9.924 65 3 30 82681 96977 13.068 69 2 30 194290 249905 45.895 85 2 30 120032 223079 73.678 91 2 30 122965 285909 8.9041 111 2 30 122965 191470 29.555 123 2 30 122965 191470		表	$\mathbf{A} \cdot 3$	Shor	実験結果	(253 まで, see	c)
N a nQubits nGates (Ours) Ours 15 2 18 12600 31 0.111 21 2 22 25330 3350 0.654 33 5 26 44466 21530 4.0172 35 2 26 65392 24223 6.305 39 2 26 61946 24223 6.874 51 2 26 61904 40282 8.848 57 5 26 51365 37908 9.924 65 3 30 82681 96977 13.068 69 2 30 104290 249905 45.895 85 2 30 12032 223079 73.678 91 2 30 125965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 122965 191470		NT -			a .	nNodes	0
15218 12600 31 0.111 21222 25330 3350 0.654 33526 44466 21530 4.0172 35226 55392 24223 6.305 39226 61946 24223 6.874 51226 55760 72 0.984 55226 61904 40282 8.848 57526 51365 37908 9.924 65330 82681 96977 13.068 69230 98779 184343 45.700 77230 104290 249905 45.895 85230 99412 83 2.472 87230 12032 223079 73.678 91230 116239 96981 15.617 93230 108075 86053 15.745 95230 125965 285909 83.904 111230 122965 191470 29.555 123230 118342 161735 26.556 1297 34 154326 213029 27.439 1332 34 17052 606272 193.731 1412 34 200852 651755 20.479 1592 34 200852 651755 20.479 1592 34 2	N	а	nQu	bits	nGates	(Ours)	Ours
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	2		18	12600	31	0.111
11121210000100013352644466215304.01723522655392242236.3053922661946242236.8745122655760720.9845522661904402828.8485752651365379089.92465330826819697713.068692309877918434345.7007723010429024990545.8958523099412832.472872301203222307973.6789123012596528590983.9041112301296519147029.5551232301080758605315.7459523012296519147029.55512323011834216173526.55612973415432621302927.43913323417052606272193.731141234200852651755205.479159234200852651755205.479159234200852651755205.4791592342009541942908445.4531853341569832179150698.038	21	2		22	25330	3350	0.654
35 2 26 55392 24223 6.305 39 2 26 61946 24223 6.874 51 2 26 61904 40282 8.848 57 5 26 61904 40282 8.848 57 5 26 61904 40282 8.848 57 5 26 51365 37908 9.924 65 3 30 82681 96977 13.068 69 2 30 98779 184343 45.700 77 2 30 104290 249905 45.895 85 2 30 99412 83 2.472 87 2 30 12032 223079 73.678 91 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 29177 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 17052 606272 193.731 141 2 34 210041 1937432 413.271 143 2 34 210041 1937432 413.271 143 2 34 200852 651755 205.479 155 2 34 200852 651755 205.479 <td>33</td> <td>5</td> <td></td> <td>26</td> <td>44466</td> <td>21530</td> <td>4 0172</td>	33	5		26	44466	21530	4 0172
39 2 26 61946 24223 6.874 51 2 26 61946 24223 6.874 55 2 26 61904 40282 8.848 57 5 26 51365 37908 9.924 65 3 30 82681 96977 13.068 69 2 30 98779 184343 45.700 77 2 30 104290 249905 45.895 85 2 30 99412 83 2.472 87 2 30 120032 223079 73.678 91 2 30 120965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 210041 1937432 413.271 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200924 1942908 <td< td=""><td>35</td><td>2</td><td></td><td>26</td><td>55392</td><td>24223</td><td>6 305</td></td<>	35	2		26	55392	24223	6 305
51 2 26 5760 72 0.984 55 2 26 61904 40282 8.848 57 5 26 51365 37908 9.924 65 3 30 82681 96977 13.068 69 2 30 98779 184343 45.700 77 2 30 104290 249905 45.895 85 2 30 99412 83 2.472 87 2 30 116239 96981 15.617 93 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 17052 606272 193.731 141 2 34 210041 1937432 413.271 143 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 34 1209924 1942908 445.453 161 3 34 156983 2179150 698.038 <td>39</td> <td>2</td> <td></td> <td>-0 26</td> <td>61946</td> <td>24223</td> <td>6 874</td>	39	2		-0 26	61946	24223	6 874
2 26 61904 40282 8.848 57 5 26 51365 37908 9.924 65 3 30 82681 96977 13.068 69 2 30 98779 184343 45.700 77 2 30 104290 249905 45.895 85 2 30 99412 83 2.472 87 2 30 116239 96981 15.617 91 2 30 1129032 223079 73.678 91 2 30 122965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 210041 1937432 413.271 143 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.47	51	2		-0 26	55760	72	0.984
57 5 26 51365 37908 9.924 65 3 30 82681 96977 13.068 69 2 30 98779 184343 45.700 77 2 30 104290 249905 45.895 85 2 30 99412 83 2.472 87 2 30 116239 96981 15.617 93 2 30 116239 96981 15.617 93 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 210041 1937432 413.271 143 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 158 3 4 120041 1937432 413.271 143 2 34 200852 65175	55	2		-0 26	61904	40282	8 848
1 2 1	57	5		-0 26	51365	37908	9.924
69 2 30 98779 184343 45.700 77 2 30 104290 249905 45.895 85 2 30 99412 83 2.472 87 2 30 120032 223079 73.678 91 2 30 116239 96981 15.617 93 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 17052 606272 193.335 155 2 34 210041 1937432 413.271 143 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200924 1942908 445.453 185 3 34 156983 2179150 698.038 177 5 34 170854 1917018 661.788 203 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 200796 <	65	3		30	82681	96977	13.068
77 2 30 104290 249905 45.895 85 2 30 99412 83 2.472 87 2 30 120032 223079 73.678 91 2 30 116239 96981 15.617 93 2 30 108075 86053 15.745 95 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200924 1942908 445.453 177 5 34 170854 1917018 647.519 183 2 34 200924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 207950 307.664 201 7 34 171837 2179188 <	69	2		30	98779	184343	45.700
11 12 30 19120 11030 11030 85 2 30 120032 223079 73.678 91 2 30 116239 96981 15.617 93 2 30 108075 86053 15.745 95 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 210041 1937432 413.271 143 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 158 3 4 160706 475205 193.335 155 2 34 200852 651755 205.479 183 2 34 120924	77	2		30	104290	249905	45.895
872 30 120032 223079 73.678 91 2 30 116239 96981 15.617 93 2 30 108075 86053 15.745 95 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 185594 1523619 442.710 143 2 34 210041 1937432 413.271 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 183 2 34 1209924 1942908 445.453 185 3 34 186983 2179150 698.038 177 5 34 10795 1295002 307.664 201 7 34 171837 2179188 $661.$	85	2		30	99412	83	2.472
91 2 30 116239 96981 15.617 93 2 30 108075 86053 15.745 95 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 285665 77.211 115 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 185594 1523619 442.710 143 2 34 210041 1937432 413.271 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200924 1942908 445.453 183 2 34 209924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 106750 2965174 895.473 213 2 34 <td>87</td> <td>2</td> <td></td> <td>30</td> <td>120032</td> <td>223079</td> <td>73.678</td>	87	2		30	120032	223079	73.678
31 2 30 11025 10501 10501 93 2 30 108075 86053 15.745 95 2 30 125965 285909 83.904 111 2 30 124964 285665 77.211 115 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 210041 1937432 413.271 143 2 34 210041 1937432 413.271 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 183 2 34 200924 1942908 445.453 185 3 4 160705 295002 307.664 201 7 34 170854 1917018 661.788 203 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 195075 2965174 895.473 213 2 34 <t< td=""><td>91</td><td>2</td><td></td><td>30</td><td>116239</td><td>96981</td><td>15.617</td></t<>	91	2		30	116239	96981	15.617
35 2 30 125965 285909 83.904 111 2 30 122965 285909 83.904 111 2 30 122965 285665 77.211 115 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 185594 1523619 442.710 143 2 34 210041 1937432 413.271 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200924 1942908 445.453 183 2 34 200924 1942908 445.453 185 3 34 170854 1917018 661.788 203 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 106750 2965174 895.473 213 2 3	93	2		30	108075	86053	15 745
35 2 36 120305 120305 50.304 111 2 30 124964 285665 77.211 115 2 30 109927 348645 74.966 119 2 30 122965 191470 29.555 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 210041 1937432 413.271 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 159 2 34 200852 651755 205.479 183 2 34 209924 1942908 445.453 185 3 34 156983 2179150 698.038 177 5 34 209924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 200795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34	95	2		30	125965	285909	83 904
11123012100120000011111115230109927 348645 74.966 11923012296519147029.55512323011834216173526.55612973415432621302927.439133234171052606272193.7311412341855941523619442.7101432342100411937432413.271145634160706475205193.335155234200852651755205.4791592342203831680862509.6521613341569832179150698.0381775341708541917018647.519183234209241942908445.4531853341828381166027345.2621872342107951295002307.6642017341718372179188661.7882032341954032718391720.3662053341863452309935721.66821523420760908949343.16021753418669421303234.375219234206577606275266.68421523420056726627266.684	111	2		30	124964	285665	$77\ 211$
11523012296519147029.55512323011834216173526.55612973415432621302927.439133234171052606272193.7311412341855941523619442.7101432342100411937432413.271145634160706475205193.335155234200852651755205.4791592342203831680862509.6521613341569832179150698.0381775341708541917018647.5191832342009241942908445.4531853341828381166027345.2621872342107951295002307.6642017341718372179188661.788203234180079954.6082093341670502965174895.473213234200760908949343.16021753418069421303234.375219234202536779543124.5902352342007962970951841.0012372341956252572037841.0712472342105741166847356.43724	115	2		30	109927	348645	74 966
110 2 30 112000 10110 10110 10000 123 2 30 118342 161735 26.556 129 7 34 154326 213029 27.439 133 2 34 171052 606272 193.731 141 2 34 185594 1523619 442.710 143 2 34 210041 1937432 413.271 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 220383 1680862 509.652 161 3 34 156983 2179150 698.038 177 5 34 170854 1917018 647.519 183 2 34 209924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 195403 2718391 720.366 205 3 34 18079 95 4.608 209 3 34 18079 95 4.608 209 3 34 167050 2965174 895.473 213 2 34 200760 908949 343.160 217 5 <td>119</td> <td>2</td> <td></td> <td>30</td> <td>122965</td> <td>191470</td> <td>29 555</td>	119	2		30	122965	191470	29 555
12023611001210110510010512973415432621302927.439133234171052 606272 193.7311412341855941523619442.7101432342100411937432413.271145634160706475205193.335155234200852651755205.4791592342203831680862509.6521613341569832179150698.0381775341708541917018647.5191832342099241942908445.4531853341828381166027345.2621872342107951295002307.6642017341718372179188661.78820323418079954.6082093341670502965174895.473213234200760908949343.16021753418069421303234.375219234202536779543124.5902352342007962970951841.30023723420557606275266.6842212342005762970951841.0712472342005741166847356.4372	123	2		30	118342	161735	26.556
12511323417105213502511105133234171052 606272 193.7311412341855941523619442.7101432342100411937432413.271145634160706475205193.335155234200852651755205.4791592342203831680862509.6521613341569832179150698.0381775341708541917018647.5191832342099241942908445.4531853341828381166027345.2621872342107951295002307.6642017341718372179188661.788203234180079954.6082093341670502965174895.4732132342007060908949343.16021753418069421303234.375219234202536779543124.5902352342007962970951841.3002372342105741166847356.4372491134188597270297960.818	129	7		34	154326	213029	27 439
105231111002 000212 100101 141234 185594 1523619 442.710 143234 210041 1937432 413.271 145634 160706 475205 193.335 155 234 200852 651755 205.479 159 234 220383 1680862 509.652 161 334 156983 2179150 698.038 177 534 170854 1917018 647.519 183 234 209924 1942908 445.453 185 334 182838 1166027 345.262 187 234 210795 1295002 307.664 201 734 171837 2179188 661.788 203 234 195403 2718391 720.366 205 334 18079 95 4.608 209 334 167050 2965174 895.473 213 234 200760 908949 343.160 217 534 180694 213032 34.375 219 234 202536 779543 124.590 235 234 200796 2970951 841.300 237 234 195625 2572037 841.071 247 234 210574 1166847 356.437 249 11 </td <td>133</td> <td>2</td> <td></td> <td>34</td> <td>171052</td> <td>606272</td> <td>193 731</td>	133	2		34	171052	606272	193 731
1112311000011000011000011000011432342100411937432413.271145634160706475205193.335155234200852651755205.4791592342203831680862509.6521613341569832179150698.0381775341708541917018647.5191832342099241942908445.4531853341828381166027345.2621872342107951295002307.6642017341718372179188661.7882032341954032718391720.366205334180079954.6082093341670502965174895.473213234200760908949343.16021753418069421303234.375219234202536779543124.5902352342007962970951841.3002372341956252572037841.0712472342105741166847356.43724911341885972702997960.818	141	2		34	185594	1523619	442 710
145 2 61 210011 100110 1001102 110111 145 6 34 160706 475205 193.335 155 2 34 200852 651755 205.479 159 2 34 220383 1680862 509.652 161 3 34 156983 2179150 698.038 177 5 34 170854 1917018 647.519 183 2 34 209924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 195403 2718391 720.366 205 3 34 180079 95 4.608 209 3 34 167050 2965174 895.473 213 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 200574 1166847 356.437 249 11 34 188597 270297 960.818	143	2		34	210041	1937432	413 271
15 2 34 100100 110200 100000 155 2 34 200852 651755 205.479 159 2 34 220383 1680862 509.652 161 3 34 156983 2179150 698.038 177 5 34 170854 1917018 647.519 183 2 34 209924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 195403 2718391 720.366 205 3 34 167050 2965174 895.473 213 2 34 186345 2309935 721.668 217 5 34 180694 213032 34.375 219 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 200574 1166847 356.437 247 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818	145	6		34	160706	475205	193 335
150 2 34 220383 1680862 509.652 159 2 34 220383 1680862 509.652 161 3 34 156983 2179150 698.038 177 5 34 170854 1917018 647.519 183 2 34 209924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 195403 2718391 720.366 205 3 34 167050 2965174 895.473 213 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818	155	2		34	200852	651755	205.479
161 3 34 156983 2179150 698.038 177 5 34 170854 1917018 647.519 183 2 34 209924 1942908 445.453 185 3 34 182838 1166027 345.262 187 2 34 210795 1295002 307.664 201 7 34 171837 2179188 661.788 203 2 34 195403 2718391 720.366 205 3 34 180079 95 4.608 209 3 34 167050 2965174 895.473 213 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818	159	2		34	220383	1680862	509.652
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	161	3		34	156983	2179150	698.038
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	177	5		34	170854	1917018	647.519
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	183	2		34	209924	1942908	445.453
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	185	3		34	182838	1166027	345.262
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	187	2		34	210795	1295002	307.664
203 2 34 195403 2718391 720.366 205 3 34 180079 95 4.608 209 3 34 167050 2965174 895.473 213 2 34 186345 2309935 721.668 215 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 206577 606275 266.684 221 2 34 200796 2970951 841.300 235 2 34 200796 2970951 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 270297 960.818	201	7		34	171837	2179188	661.788
205 3 34 180079 95 4.608 209 3 34 167050 2965174 895.473 213 2 34 186345 2309935 721.668 215 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 206577 606275 266.684 221 2 34 200796 2970951 841.300 235 2 34 200796 2970951 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 270297 960.818	203	2		34	195403	2718391	720.366
209 3 34 167050 2965174 895.473 213 2 34 186345 2309935 721.668 215 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 206577 606275 266.684 221 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 195625 2572037 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818	205	3		34	180079	95	4.608
213 2 34 186345 2309935 721.668 215 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 206577 606275 266.684 221 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 195625 2572037 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 270297 960.818	209	3		34	167050	2965174	895.473
215 2 34 207060 908949 343.160 217 5 34 180694 213032 34.375 219 2 34 206577 606275 266.684 221 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 195625 2572037 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818	213	2		34	186345	2309935	721.668
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	215	2		34	207060	908949	343.160
219 2 34 206577 606275 266.684 221 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 195625 2572037 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818	217	5		34	180694	213032	34.375
221 2 34 202536 779543 124.590 235 2 34 200796 2970951 841.300 237 2 34 195625 2572037 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 270297 960.818	219	2		34	206577	606275	266.684
235 2 34 200796 2970951 841.300 237 2 34 195625 2572037 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818	221	2		34	202536	779543	124.590
237 2 34 195625 2572037 841.071 247 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818 252 2 2 24 2004227 2002020 1102140	235	2		34	200796	2970951	841.300
247 2 34 210574 1166847 356.437 249 11 34 188597 2702997 960.818 252 2 24 227 22702997 200.818	237	2		34	195625	2572037	841.071
249 11 34 188597 2702997 960.818 252 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 26	247	2		34	210574	1166847	356.437
	249	11		34	188597	2702997	960.818
253 Z 34 204637 3620822 1197.188	253	2		34	204637	3620822	1197.188

		<u>X 11 4</u>				
0.1%	C +	nNodes	T.	Ours	Ours	Aer
nQubits	nGates	(Unitary)	niter	(Unitary)	(qasm)	(qasm)
11	56	20	25	0.011	0.014	0.009
12	61	22	35	0.011	0.024	0.015
13	66	24	50	0.012	0.040	0.037
14	71	26	71	0.011	0.066	0.088
15	76	28	100	0.015	0.139	0.314
16	81	30	142	0.016	0.254	0.688
17	86	32	201	0.021	0.473	1.815
18	91	34	284	0.025	0.836	4.687
19	96	36	402	0.034	1.734	13.648
20	101	38	568	0.048	3.052	37.863
21	106	40	804	0.065	7.298	119.372
22	111	42	1137	0.098	13.731	344.673
23	116	44	1608	0.139	26.770	1120.155
24	121	46	2274	0.223	51.063	ТО
25	126	48	3216	0.322	100.587	
26	131	50	4549	0.512	207.933	
27	136	52	6433	0.930	412.141	
28	141	54	9099	1.313	836.258	
29	146	56	12867	3.306	1734.069	
30	151	58	18198	4.572	ТО	
31	156	60	25735	7.532		
32	161	62	36396	11.307		
33	166	64	51471	17.472		
34	171	66	72792	24.613		
35	176	68	102943	36.958		
36	181	70	145584	52.847		
37	186	72	205887	77.541		
38	191	74	291168	113.248		
39	196	76	411774	162.588		
40	201	78	582337	233.435		
41	206	80	823549	274.106		
42	211	82	1164675	394.433		
43	216	84	1647099	562.885		
44	221	86	2329350	806.320		

表 A·4 Grover 実験結果 (sec)